LOCALIZATION OF HUMANS IN IMAGES USING CONVOLUTIONAL NETWORKS

JONATHAN TOMPSON

Advisor: Christoph Bregler

OVERVIEW

Thesis goal:

State-of-the-art human pose recognition

from depth (hand tracking)

from RGB (body tracking)

Domain Specific Optimizations:

Kinematic structure in ConvNet (hybrid Graphical Model + ConvNet) Motion feature inputs Novel architecture to recover lost spatial precision due to pooling

TALK OUTLINE

1. Hand Tracking

a) J. Tompson, M. Stein, Y. LeCun, K. Perlin, "Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks", ACM TOG/SIGGRAPH 2014

2. Body Tracking

- a) J. Tompson, A. Jain, Y. LeCun, C. Bregler, "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation", NIPS 2014
- b) A. Jain, J. Tompson, Y. LeCun, C. Bregler, "MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation", ACCV 2014
- c) J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, "Efficient Object Localization Using Convolution Networks", CVPR 2015

TALK OUTLINE

1. Hand Tracking

a) J. Tompson, M. Stein, Y. LeCun, K. Perlin, "Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks", ACM TOG/SIGGRAPH 2014

2. Body Tracking

- a) J. Tompson, A. Jain, Y. LeCun, C. Bregler, "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation", NIPS 2014
- b) A. Jain, J. Tompson, Y. LeCun, C. Bregler, "MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation", ACCV 2014
- c) J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, "Efficient Object Localization Using Convolution Networks", CVPR 2015

HAND POSE INFERENCE

Target: low-cost markerless mocap

Full articulated pose with high DoF Real-time with low latency

Challenges

- Many DoF contribute to model deformation
- Constrained unknown parameter space
- Self-similar parts
- Self occlusion
- Device noise

Supervised learning based approach

Supervised learning based approach

Supervised learning based approach

RDF HAND DETECTION

Per-pixel binary classification \rightarrow Hand centroid location

Randomized decision forest (RDF)

- Shotton et al.[1]
- Fast (parallel)
- Generalize
- 12 hour training, depth 25

Dataset

7500 images (1000 for test)

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1] pose₄ pose₅ With many improvements

pose₆

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1]

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1]

pose₄ pose₅

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1]

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1]

 $pose_4 pose_5 pose_6$

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1]

pose₄ pose₅

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1]

Goal: labeled RGBD images

 $\{\{D_1, pose_1\}, \{D_2, pose_2\}, ...\}, pose_i in R^{42}$ Synthetic data doesn't capture device noise

Analysis-by-synthesis Oikonomidis et al.^[1]

FEATURE DETECTION

CN has difficulty learning (U,V) positions directly

Require learned integration Possible in theory (**never works**)

Recast pose-recognition

Learn feature distributions

P_{part2}(x, y)

DETECTION ARCHITECTURE

Inspired by Farabet et al. (2013)

Multi-resolution convolutional banks

INFERRED JOINT POSITIONS

POSE RECOVERY (IK)

Goal

2D heat-maps + 3D depth \rightarrow 3D skeletal pose

Solution

A variant of Inverse Kinematics (IK)

- 1. Fit a 2D Gaussian to heat-map (Levenberg-Marquardt)
- 2. Sample depth at Gaussian mean

Fit skeleton at UVD/UV locations using IK

POSE RECOVERY (IK)

Entire Pipeline: 24.9ms

DF: 3.4ms CNN: 5.6ms PSO pose: 11.2ms

TALK OUTLINE

1. Hand Tracking

a) J. Tompson, M. Stein, Y. LeCun, K. Perlin, "Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks", ACM TOG/SIGGRAPH 2014

2. Body Tracking

- a) J. Tompson, A. Jain, Y. LeCun, C. Bregler, "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation", NIPS 2014
- b) A. Jain, J. Tompson, Y. LeCun, C. Bregler, "MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation", ACCV 2014
- c) J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, "Efficient Object Localization Using Convolution Networks", CVPR 2015

HUMAN BODY POSE INFERENCE

Motivation:

From my hand tracking work: do similar techniques work in RGB? How about full-body tracking?

Problem definition:

Track human body joints on a monocular RGB image Arbitrary pose and background

My Basic Idea

Two Parts:

ConvNet to track joints Graphical Model to stitch them together

JOINTLY TRAIN THEM!

PART DETECTOR

ConvNet Architecture:

Multi-resolution sliding window with overlapping receptive fields

PART DETECTOR

Efficient model (P. Sermanet and others):

Multi-resolution efficient model (my work):

PART DETECTOR

Simplified model:

Performance is close to the "full" model

Use this for real-time demo

PART DETECTOR RESULTS

What's wrong so far

Independent joint terms in objective function We're hoping the network implicitly learns joint consistency Failure cases are usually stupid:

SPATIAL MODEL

Start with my GM from ICLR 2013 paper

MRF over spatial locations

NYU

SPATIAL MODEL

SPATIAL MODEL

Start with my GM from ICLR 2013 paper

... And approximate it

SPATIAL MODEL

Two additional details

- **1.** Spatial model kernel size is 128x128! \rightarrow Have to use FFT^[1]
- **2.** For standard datasets \rightarrow add (noisy) torso location

[1] M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional networks through FFTs. 2013.

JOINT TRAINING

Joint training

Pre-train both models separately Joint train (BPROP) through both models

JOINT TRAINING

Joint training

Pre-train both models separately

Joint train (BPROP) through both models

Performance (Wrist):

DetectionRate
$$(R) = \frac{100}{N} \sum_{t=1}^{N} \left(\frac{\|x - x^t\|_2}{(\text{torso height t})/100} \le R \right)$$

JOINT TRAINING

Joint training

Pre-train both models separately

Joint train (BPROP) through both models

Performance (Wrist):

RESULTS

(1) B. Sapp and B. Taskar. MODEC: Multimodel decomposition models for human pose estimation. CVPR'13

(2) S. Johnson and M. Everingham. Learning Effective Human Pose Estimation for Inaccurate Annotation. CVPR'11

NYU

Joint work with MPII

Use our detector + analysis by synthesis technique

Joint work with MPII

Use our detector + analysis by synthesis technique

TALK OUTLINE

1. Hand Tracking

a) J. Tompson, M. Stein, Y. LeCun, K. Perlin, "Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks", ACM TOG/SIGGRAPH 2014

2. Body Tracking

- a) J. Tompson, A. Jain, Y. LeCun, C. Bregler, "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation", NIPS 2014
- b) A. Jain, J. Tompson, Y. LeCun, C. Bregler, "MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation", ACCV 2014
- c) J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, "Efficient Object Localization Using Convolution Networks", CVPR 2015

INCORPORATING TEMPORAL FEATURES

Single frame detection is overly constrained

Ambiguities can be resolved using multiple frames Our ACCV Paper - A short investigation:

How to use temporal features with a ConvNet detector Performance is improved using motion features

Brainless:

Just concat some form of "motion feature" with the RGB

Question:

What features should we use?

... etc

Try many and see what works:

RGB image pair RGB difference RGB + 2D Optical Flow RGB + 2D Optical Flow Mag
$$\begin{split} & \left\{ f_{i}, f_{i+\delta} \right\} \\ & \left\{ f_{i}, f_{i+\delta} - f_{i} \right\} \\ & \left\{ f_{i}, \text{FLOW}(f_{i+\delta}, f_{i}) \right\} \\ & \left\{ f_{i}, \left\| \text{FLOW}(f_{i+\delta}, f_{i}) \right\|_{2} \right\} \end{split}$$

Try many and see what works:

RGB image pair RGB difference RGB + 2D Optical Flow RGB + 2D Optical Flow Mag
$$\begin{split} & \left\{ f_{i}, f_{i+\delta} \right\} \\ & \left\{ f_{i}, f_{i+\delta} - f_{i} \right\} \\ & \left\{ f_{i}, \text{FLOW}(f_{i+\delta}, f_{i}) \right\} \\ & \left\{ f_{i}, \left\| \text{FLOW}(f_{i+\delta}, f_{i}) \right\|_{2} \right\} \end{split}$$

Annoying detail:

SIFT + RANSAC + Bundle adjustment \rightarrow planar camera motion Then subtract it out:

Optical flow mag flow mag 15 flow mag 10 W.O. 10 camera 5

MOTION FEATURES: RESULTS

Unsurprising... Optical flow is the best

Magnitude prevents overtraining on motion direction

YU

How sensitive is it to time?

TALK OUTLINE

1. Hand Tracking

a) J. Tompson, M. Stein, Y. LeCun, K. Perlin, "Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks", ACM TOG/SIGGRAPH 2014

2. Body Tracking

- a) J. Tompson, A. Jain, Y. LeCun, C. Bregler, "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation", NIPS 2014
- b) A. Jain, J. Tompson, Y. LeCun, C. Bregler, "MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation", ACCV 2014
- c) J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, "Efficient Object Localization Using Convolution Networks", CVPR 2015

ΜΟΤΙVΑΤΙΟΝ

We use pooling

Too much: bad spatial accuracy

Too little: Over-trains, **<u>slow</u>**, not enough context

Idea:

Use lots of pooling but recover spatial accuracy A "smart" cascade (highly engineered)

HIGH LEVEL ARCHITECTURE

Highly "engineered"

Coarse to Fine architecture with shared features

COARSE MODEL

Straight from the NIPS paper

Many more features (more engineering)

YU

CASCADE CROP

What do we want?

To refine the coarse heat-map by cropping around the approx. UV What features do we need?

Early layers that haven't specialized

Consistent Spatial Context from all layers

FINE MODEL

Inputs sampled from multiple locations \rightarrow Need separate networks (Siamese)

FINE MODEL – REPLICATED INSTANCE

Use same strategy as the Coarse Model

Fully Convolutional (with 1x1 conv layers)

Up-sample to bring features into canonical resolution

RESULTS

FLIC Dataset again

Small improvement for wrist:

Not enough context in fine model

Too many mistakes in the coarse model

How Well Are We Doing?

Evaluation of our model

Here we use a part model with 4x pooling (+/- 2 pixel uncertainty)

How Well Are We Doing?

Informal study to evaluate human performance

- 1. Show users examples and explain desired joint location
- 2. Ask users to label 10 images from FLIC
- 3. Compare this to our performance

How Well Are We Doing?

Comparing our ConvNet to Human Variance

The 16x pooling module actually does quite well despite pooling.

	Face	Shoulder	Elbow	Wrist
Label Noise (10 images)	0.65	2.46	2.14	1.57
This work 4x (test-set)	1.09	2.43	2.59	2.82
This work 8x (test-set)	1.46	2.72	2.49	3.41
This work 16x (test-set)	1.45	2.78	3.78	4.16

Well, What About a Standard Cascade?

Baseline experiment

Construct a ConvNet that ONLY samples from the RGB

Well, What About a Standard Cascade?

Baseline experiment

Construct a ConvNet that ONLY samples from the RGB

COMPARISON WITH OTHER MODELS

FLIC

PCK @ 0.2

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Upper Body	Full Body
Gkioxari et al.	-	36.3	26.1	15.3	-	-	-	25.9	-
Sapp & Taskar	-	38.0	26.3	19.3	-	-	-	27.9	-
Yang & Ramanan	73.2	56.2	41.3	32.1	36.2	33.2	34.5	43.2	44.5
Pishchulin et al.	74.2	49.0	40.8	34.1	36.5	34.4	35.1	41.3	44.0
This work 4x	96.0	91.9	83.9	77.7	80.9	72.2	64.8	84.5	82.0

This work 8x

This work 16x 91.6

92.1

75.8

73.0

55.6

56.6

47.7 45.5

CONCLUSIONS

What have we shown?

ConvNets are *really* good at Object Recognition Even with real-time constraints

CONCLUSIONS

What have we shown?

ConvNets are *really* good at Object Recognition Even with real-time constraints

Simple networks in limited domains work well (hand tracking) Can leverage "real" models to create amazing data

CONCLUSIONS

What have we shown?

ConvNets are *really* good at Object Recognition Even with real-time constraints

Simple networks in limited domains work well (hand tracking) Can leverage "real" models to create amazing data

For complex inputs we need domain optimizations "belief propagation" within a neural network – enforce structure Use multi-frame input – human motion is well defined and "learnable" Multi-res input + Multi-res output – Offset spatial precision loss

ACKNOWLEDGEMENTS

QUESTIONS?

THANK YOU!

SOME RELATED WORK

Wang et al. & 3Gear (2009 to present)

Tiny images (nearest-neighbor)

Oikonomidis et al. (2011,2012)

PSO search using synthetic depth images

Shotton et al. (2011 and 2014-15)

Randomized Decision Forests

Melax et al. (2013)

Physics simulation (LCP)

Many more in the paper...

(Li, Weise, LeCun, Balan, Keskin, ...)

FEATURE DETECTION

Infer 2D feature locations

Fingertips, palm, knuckles, etc.

Convolutional network (ConvNet) for feature inference

Efficient arbitrary function learner Reasonably fast using modern GPUs Self-similar features share learning capacity

MULTI-RESOLUTION CONVNET

Downsampling (low pass) & local contrast normalization (high pass)

3 x banks with band-pass spectral density

CN convolution filter sizes constant

CN bandwidth context is high without the cost of large (expensive) filter kernels

PSO/NM OBJECTIVE FUNCTION

$$F(C) = \sum_{s=1}^{3} \left(\Delta(I_s, C) \right) + \Phi(C) + P(C)$$

L1 Depth comparison (multiple cameras)

$$\Delta(I_s, C) = \sum_{u, v} \min\left(\left|I_s(u, v) - R_s(C, u, v)\right|, d_{\max}\right)$$

Coefficient prior (out-of-bound penalty)

$$\Phi(C) = \sum_{k=1}^{n} w_k \left[\max(C_k - C_{k\max}, 0) + \max(C_{k\min} - C_k, 0) \right]$$

Interpenetration constraint

Sum of bounding sphere interpenetrations

IK OBJECTIVE FUNCTION

$$f(m) = \sum_{i=1}^{n} \left[\Delta_{i}(m) \right] + \Phi(C)$$

$$\Delta_{i}(m) = \begin{cases} \left\| \begin{array}{l} (u, v, d)_{i}^{t} - (u, v, d)_{i}^{m} \right\|_{2} & \text{If } d_{i}^{t} \neq 0 \\ (u, v)_{i}^{t} - (u, v)_{i}^{m} \right\|_{2} & \text{otherwise} \end{cases}$$

 $\Delta_i(m)$ is a L2 norm in 2D or 3D if there is depth image support for that pixel Lots of problems... But it works Use PrPSO to minimize f(m): hard to parameterize and multi-modal (so gradient descent methods fail)

Some Related Work

Andriluka et al. (CVPR 2009)

Pictorial Structures Revisited: People Detection and Articulated Pose Estimation Shape context descriptors trained using ADABOOST + generative model and belief propagation

Felzenszwalb and Sirshick (PAMI 2010)

Object Detection with Discriminatively Trained Part-Based Models Deformable Part Model (DPM) \rightarrow "structure as latent variable"

Sapp and Taskar (CVPR 2013)

Modec: Multimodal decomposable models for human pose estimation HOG + Graphical Model (and FLIC dataset)

Jain et al. (including me) (ICLR 2014)

Learning Human Pose Estimation Features with Convolutional Networks Simple ConvNet with simple MRF spatial model

Toshev & Szegedy (CVPR 2014)

DeepPose: Human pose estimation via deep neural networks Large ConvNet cascade to perform direct regression on UV locations

More in the paper (and more recent)...

(Pishchulin, Andriluka, LeCun, Johnson, Chen, ...)

SPATIAL MODEL

Implement it as a network

$$b(f) = \Phi(f) \prod_{i} \left(\Phi(x_{i}) * \Psi(f \mid x_{i}) + c(f \mid x_{i}) \right)$$

$$\bar{e}_{A} = \exp\left(\sum_{v \in V} \left[\log \left(\text{SoftPlus} \left(e_{A \mid v} \right) * \text{ReLU} \left(e_{v} \right) + \text{SoftPlus} \left(b_{v \to A} \right) \right) \right] \right)$$
where: SoftPlus $(x) = \frac{1}{\beta} \log \left(1 + \exp \left(\beta x \right) \right), \frac{1}{2} \le \beta \le 2$
ReLU $(x) = \max \left(x, \epsilon \right), \ 0 < \epsilon \le 0.01$

JOINT TRAINING

Joint training

Pre-train both models separately

Joint train (BPROP) through both models

FLIC-PLUS

FLIC-Extended^[1] is not fair!

20928 training / 1014 test samples

800 out of the 1014 test images (~80%) have an image in the training set that is at most 40 frames away

"FLIC-Plus":

Use Mechanical Turk to find scenes in training and test sets Reject training set images from the same scene

80

cims.nyu.edu/~tompson/flic_plus.htm

SPATIAL DROPOUT

Dropout fails for fully-convolutional networks

Gradients are correlated because pixels are highly correlated Dropout just scales the learning rate

Instead Dropout the entire feature

How Well Are We Doing?

Time (ms) for FPROP

For 16x pooling: first 2 layers dominates runtime

	4x pool	8x pool	16x pool
Coarse-Model Fine-Model Cascade	$140.0 \\ 17.2 \\ 157.2$	$74.9 \\ 19.3 \\ 94.2$	$54.7 \\ 15.9 \\ 70.6$

