
Unsupervised Feature Learning from Temporal Data

Rostislav Goroshin1

goroshin@cims.nyu.edu
Joan Bruna1

bruna@cims.nyu.edu
Jonathan Tompson1

tompson@cims.nyu.edu

Arthur Szlam2

aszlam@ccny.cuny.edu
David Eigen1

deigen@cs.nyu.edu
Yann LeCun1

yann@cs.nyu.edu

1Courant Institute of Mathematical Sciences, New York University

2Department of Mathematics, City College of New York

Abstract

Current state-of-the art object detection and recognition algorithms mainly use supervised training,
and most benchmark datasets contain only static images. In this work we study feature learning
in the context of temporally coherent video data. We focus on training convolutional features on
unlabeled video data, using only the assumption that adjacent video frames contain semantically
similar information. This assumption is exploited to train a pooling auto-encoder model regularized
by slowness and sparsity. First, we confirm that fully connected networks mainly learn features
stable under translation. Insipred by this observation, we proceed to train convolutional slow features
which reveal richer invariants that are learned from natural video data.

1 Introduction

Is it possible to characterize “good” representations without specifying a task a priori? If so, does
there exist a set of generic priors which lead to these representations? In recent years state of
the art results from supervised learning suggest that the most powerful representations for solving
specific tasks can be learned from the data itself. It has been hypothesized that large collections
of unprocessed, unlabeled data can be used to learn generically useful representations. However
the principles which would lead to generically useful representations in the realm of unsupervised
learning remain elusive. Temporal coherence is a form of weak supervision, which we exploited to
learn generic signal representations that are stable with respect to the variability in natural video,
including local deformations. Such representations can then be used to improve deep convolutional
architectures on supervised tasks.

Our main assumption is that data samples that are temporal neighbors are also likely to be neighbors
in the latent space. For example, adjacent frames in a video sequence are more likely to be se-
mantically similar than non-adjacent frames. This assumption naturally leads to the slowness prior
on features which was introduced in SFA [21]. This prior has been successfully applied to metric
learning, as a regularizer in supervised learning, and in unsupervised learning [8, 15, 21]. A pop-
ular assumption in unsupervised learning is that high dimensional data lies on a low dimensional
manifold parametrized by the latent variables [1, 18, 20, 6]. In this case, temporal sequences can be
thought of as one-dimensional trajectories on this manifold. Thus, an ensemble of sequences that
pass through a common data sample have the potential to reveal the local latent variable structure
within a neighborhood of that sample.

Non-linear operators consisting of a redundant linear transformation followed by a point-wise non-
linearity and a local pooling, are fundamental building blocks in deep convolutional networks, due
to their capacity to generate local invariance while preserving discriminative information [13, 2]. By

1

considering a simple generative model based on local translations, we justify that pooling operators
are a natural choice for our unsupervised learning architecture. The resulting pooling autoencoder
model captures the main source of variability in natural video sequences, which can be further ex-
ploited by enforcing a convolutional structure. Experiments on YouTube data show that one can
learn pooling representations with good discrimination and stability to observed temporal variabil-
ity. We show that these features represent a metric which we evaluate on retrieval and classification
tasks.

2 Contributions and Prior Work

The problem of learning temporally stable representations has been extensively studied in the litera-
ture, most prominently in Slow Feature Analysis (SFA) and Slow Subspace Analysis (SSA) [21, 11].
Works that learn slow features distinguish themselves mainly in three ways: (1) how the features are
parameterized, (2) how the trivial (constant) solution is avoided, and (3) whether or not additional
priors such as independence or sparsity are imposed on the learned features.

The features presented in SFA take the form of a nonlinear transformation of the input, specifically a
quadratic expansion followed by a linear combination using learned weights optimized for slowness
[21]. This parametrization is equivalent to projecting onto a learned basis followed by L2 pooling.
The recent work by Lies et al [14] uses features which are composed of projection onto a learned
unitary basis followed by a local L2 pooling in groups of two [14].

Slow feature learning methods also differ in the way that they avoid the trivial solution of learning
to extract constant features. Constant features are perfectly slow (invariant), however they are not
informative (discriminative) with respect to the input. All slow feature learning methods must make
a trade-off between the discriminability and stability of the learned features in order to avoid trivial
solutions. Slow Feature Analysis introduces two additional constraints, namely that the learned
features must have unit variance and must be decorrelated from one another. In the work by Lies
et. al, the linear part of the transformation into feature space is constrained to be unitary. However
enforcing that the transform be unitary implies that it is invertible for all inputs, and not just the data
samples which unnecessarily limits its invariance properties. Since the pooling operation following
this linear transform has no trainable parameters, including this constraint is sufficient to avoid the
trivial solution. Metric learning approaches [8] can be used to perform dimensionality reduction
by optimizing a criteria which minimizes the distance between temporally adjacent samples in the
transformed space, while repelling non-adjacent samples with a hinge loss, as explained in Section
3. The margin based contrastive term in DrLIM is explicitly designed to only avoid the constant
solution and provides no guarantee on how informative the learned features are. Furthermore since
distances grow exponentially due to the curse of dimensionality, metric based contrastive terms can
be trivially satisfied in high dimensions.

Our approach uses a reconstruction criterion as a constrastive term. This apporach is most similar to
the one taken by Kavukcuoglu et al [10] when optimizing group sparsity. However, in our approach
the pooling is done over a sparse representation of the input which limits information loss through
pooling.

Several other studies combine the slowness prior with independence inducing priors [14, 4]. For a
detailed explanation between independence and sparsity see [9]. However, our model maximizes
the sparsity of the representation before the pooling operator.

This work relates slowness to metric learning and demonstrates that the learned features represent a
semantically meaningful metric, which is tested on retrieval and classification tasks. The dominant
source of variability in natural videos on small spatial scales is mainly due to local translations.
This is why many previous works on slowness learn mainly locally translation invariant features
[21, 11, 14]. In this work we introduce the use of convolutional pooling architectures, which are
locally translation invariant by design, and show that a richer variety of slow features can be learned.

3 Slowness as Metric Learning

Temporal coherence can be exploited by assuming a prior on the features extracted from the temporal
data sequence. One such prior is that the features should vary slowly with respect to time. In the

2

(a)
-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

"/tmp/temp.txt" using 1:2:3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

"/tmp/temp.txt" using 1:2:3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

"/tmp/temp.txt" using 1:2:3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

"/tmp/temp.txt" using 1:2:3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(b)

Figure 1: (a) Three samples from out rotating plane toy dataset. (b) Toy dataset plotted in the output
space of GW at the start (top) and end (bottom) of training. The left side of the figure is colored by
the yaw angle, and the right side by roll, 0◦ blue, 90◦ in pink.

discrete time setting this prior corresponds to minimizing an Lp norm of the difference of feature
vectors corresponding to temporally adjacent inputs. Consider a video sequence with T frames, if zt
represents the feature vector extracted from the frame at time t then the slowness prior corresponds
to minimizing

∑T
t=1 ‖zt − zt−1‖p. To avoid the degenerate solution zt = 0 ∀ t the second term in

the objective encourages data samples that are not temporal neighbors to be separated by at least a
distance of m-units in feature space, where m is known as the margin. In the temporal setting this
corresponds to minimizing max(0,m − ‖zt − zt′‖p), where |t − t′| > 1. Together the two terms
form a loss function introduced by Hadsell et al as a dimension reduction and data visualization
algorithm known as DrLIM [8]. Assume that there is a differentiable mapping from input space
to feature space which operates on individual temporal samples. Denote this mapping by G and
assume it is parametrized by a set of trainable coefficients denoted by W . That is, zt = GW (xt).
The per-sample loss function can be written as:

L(xt, xt′ ,W) =

{
‖GW (xt)−GW (xt′)‖p, if |t− t′| = 1
max(0,m− ‖GW (xt)−GW (xt′)‖p) if |t− t′| > 1

(1)

In practice the above loss is minimized by constructing a ”Siamese” network with shared weights
whose inputs are pairs of samples along with their temporal indices [8]. The loss is minimized
with respect to the trainable parameters with stochastic gradient descent via back-propagation. To
demonstrate the effect of minimizing Equation 1 on temporally coherent data, consider a toy data-set
consisting of only one object. The data-set is generated by rotating a 3D model of a toy plane (Figure
1a) by 90◦ in one-degree increments around two-axes of rotation, generating a total of 8100 data
samples. Input images (96 × 96) are projected into two-dimensional output space by the mapping
GW . In this example the mapping GW (X) : R9216 → R2. We chose GW to be a fully connected
two layer neural network. In effect this data-set lies on an intrinsically two-dimensional manifold
parametrized by two rotation angles. Since the sequence was generated by continuously rotating the
object, temporal neighbors correspond to images of the object in similar configurations. Figure 1b
shows the data-set plotted in the output space of GW at the start (top row) and end (bottom row) of
training. The left and right hand sides of Figure 1b are colorized by the two rotational angles, which
are never explicitly presented to the network. This result implies that GW has learned a mapping in
which the latent variables (rotation angles) are linearized. Furthermore, the gradients corresponding
to the two rotation angles are nearly orthogonal in the output space, which implies that the two
features extracted by GW are independent.

4 Slow-Feature Auto-Encoders

The contrastive term in (1) only acts to avoid the degenerate solution in which GW is a constant
mapping. We propose to replace this contrastive term with a term that penalizes a reconstruction
error of both data samples. Denote the functions which serve as the encoder and decoder by GWe

and RWd
, respectively. In the auto-encoder setting the decoder acts on the output of GWe

and
thus serves as the approximate inverse of GWe

at each data sample. Let X ∈ Rm and Z ∈ Rn,
then GWe

(X) : Rm → Rn and RWd
(X) : Rn → Rm. Introducing a reconstruction terms not only

prevents the constant solution, but also acts to explicitly preserve information about the input. This is
a useful property of features which are obtained using unsupervised learning; since the task to which

3

Figure 2: Visualization of the linear features obtained by minimizing Equation 2 on natural movies.

these features will be applied is not known a priori, we would like to preserve as much information
about the input as possible. Replacing the contrastive term in (1) with the reconstruction objective
and choosing the L1 norm as the measure of slowness, we obtain:

L(xt, xt′ ,W) =
∑

τ={t,t′}

‖RWd
(GWe

(xτ))− xτ‖+ β|GWe
(xt)−GWe

(xt′)| , (2)

where β is a hyper-parameter that determines the weight on the slowness of the features.

This architecture may be viewed as a regularized auto-encoder with its latent state regularized by
temporal slowness [20, 18, 17]. Since the L1 norm is known to induce sparsity [17], the choice of L1

norm in (2) corresponds to an implicit sparse prior on the difference between the representations of
two temporally adjacent data samples. The implicit prior is that only a small subset of latent variables
change between temporally adjacent data samples. Note that since |z1−z2| ≤ |z1|+ |z2|, the second
term in (2) can be arbitrarily minimized if G simply scales down the input. The reconstruction need
not suffer if R scales up the code produced by G. In our experiments RWd

= Wd is a linear map,
and this problem can be avoided by normalizing the columns of Wd [17].

To explore the properties of the minima of (2) for natural data we present experiments on a data set
consisting of natural movie patches. The data set consists of approximately 170,000, 20 × 20 gray
scale patches extracted from full resolution movies. Consider the simple case where GWe

= We

andRWd
= Wd, i.e. the encoder and decoder are linear maps. Minimizing the cost over our data-set

using stochastic gradient descent yields the features shown in Figure 2. The features are sorted by
increasing average slowness (normalized by their average activation) from top left to bottom right.
The slowness of the features is inversely proportional to their spatial frequency. This fact can be
easily interpreted. Assuming a model of variability given by a family of transformations {Uτ}τ ,
which may include local translations, rotations, etc, slow linear features wi should satisfy

∀x, τ , 〈x,wi〉 ≈ 〈Uτx,wi〉 = 〈x, U∗τwi〉 ,

where U∗τ is the adjoint operator of Uτ . It follows that slow linear features should be near eigen-
vectors of any transformation in {Uτ}τ , which explains why low frequency information is the only
linear slow feature representation. It is well known that the lowest frequencies carry most of the
energy in natural images [19, 16]. As a consequence, the average activation of a particular feature
will be inversely proportional to its frequency. Thus slowness is achieved in linear maps by sim-
ply reducing the activation of each feature as much as possible, while still reconstructing the input.
Figure 3a shows a plot of the average slowness (blue) and average absolute activation (green) of
each unit. When normalized by their average activations, the slowest features actually correspond to
the lowest spatial frequencies (the mean being the slowest feature). This suggests that linear maps
simply do not have the capacity to produce non-trivial slow features in natural videos.

5 Slowness with Pooling Operators

In order to address the lack of capacity of linear operators for forming slow features, we ask: what
is the optimal architecture of GWe

for extracting slow features? Slow features are by definition
invariant to temporal changes. In natural video and on small spatial scales these changes mainly
correspond to local translations and deformations [2]. Invariances to such changes can be achieved
using approriate pooling operators [2, 13]. Such operators are at the heart of the most successful
supervised feature learning architectures [12].

4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140

Slowness

Abs Activation

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

Slowness

Abs Activation

(b)

Figure 3: Relationship between slowness (blue curve) and activations (green curve) of the 128 code
units without (a) and with (b) pooling.

(a) (b)

Figure 4: Pooled decoder dictionaries learned without (a) and with (b) the L1 penalty using (3).

Inspired by these results, let GWe be a two stage operator comprised of a learned linear map fol-
lowed by a local pooling. Let the N hidden activations, h = Wex, be subdivided into K potentially
overlapping neighborhoods denoted by Pi. Note that biases are absorbed by expressing the input
x in homogeneous coordinates. Feature zi produced by the encoder for the input at time t can be

expressed as GiWe
(t) = ‖ht‖Pi

p =
(∑

j∈Pi
hptj

) 1
p

. Training through a local pooling operator en-
forces a local topology on the hidden activations, inducing units that are pooled together to learn
complimentary features. In the following experiments we will use p = 2, although nothing pre-
cludes us from using any norm, including p = ∞ which corresponds to max pooling. Although it
has recently been shown that it is possible to recover the input when We is sufficiently redundant,
reconstructing from these coefficients corresponds to solving a phase recovery problem [3] which is
not possible with our linear inverse map Wd. Instead of reconstructing from z we reconstruct from
the hidden representation h. This is the same approach taken in group sparse coding [10]. In order
to promote independence among the features we additionally add a sparsifying L1 penalty on the
hidden activations. To facilitate truly sparse activations a rectifying point-wise non-linearity f(·) is
applied to the hidden activations. Including the rectifying non-linearity becomes critical for learning
sparse inference in a hugely redundant dictionary, e.g. convolutional dictionaries [7]. Denote the
vector of hidden activations for the sample at time t as ht = f(Wext). The complete loss functional
is:

L(xt, xt′ ,W) =
∑

τ={t,t′}

(‖Wdhτ − xτ‖+ α|ht|) + β

K∑
i=1

∣∣‖ht‖Pi − ‖ht′‖Pi
∣∣ (3)

This combination of loss and architecture can be interpreted as follows: the sparsity penalty induces
the first stage of the encoder, h = f(Wex), to approximately infer sparse codes in the analysis
dictionary We; the slowness penalty induces the formation of pool groups whose output is stable
with respect to temporal deformations. In other words, the first stage partitions the input space

5

Figure 5: Pooling over a large number of units often leads to features that emulate convolution.

and the second stage recombines these partitions into temporally stable groups. Since the loss of
information is uncontrolled after the pooling operator, ensuring that the pooling is done over sparse
activation maps is a means of implicitly limiting the information lost by pooling.

Minimizing Equation 3 with α = 0 results in the learned decoder basis shown in Figure 4a. Here
a dictionary of 512 basis elements was trained which pooled in non-overlapping groups of four
resulting in 128 output features. Only the slowest 32 groups are shown in Figure 4a. The average
slowness and activations of each group are plotted in Figure 3b. Not only are the pooled features
much slower, but their slowness is less dependent on their corresponding activations. The learned
dictionary has a strong resemblance to the two-dimensional Fourier basis, where most groups are
comprised of phase shifted versions of the same spatial frequency. Since translations are an invariant
of the local modulus of the Fourier transform, the result of this experiment is indicative of the fact
that the translations are the principal source of variation at small spatial scales. This is a well known
phenomenon, and the Fourier basis emerges in other models which maximize slowness using the
L2 pooling operator [14]. Minimizing Equation 3 with α > 0 results in a more localized basis
depicted in Figure 4b. This basis is more consistent with a local deformation model as opposed to
a global one. For a detailed study on the trade-off between slowness and independence in feature
learning see [14]. Pooling with overlap leads to coherence between features over longer extents.
For example, the top of Figure 5 shows a groups of ten features which were obtained by pooling in
groups of four with overlap. This group is well approximated by the translation of a single oriented
edge, confirming that translations dominate the temporal variability even over larger spatial extents.
This motivates lead us to experiment with translation invariant architecture in order to learn more
varied and powerful invariance groups.

6 Slow Feature Learning using Convolutional Architectures

By replacing all linear operators in our model with convolutional filter banks translation invariance
need not be learned [13]. In all other respects the convolutional model is identical to the fully con-
nected model described in the previous section. Let the linear stage of the encoder consist of a filter
bank which takes C input color channels and produces D output feature maps. Correspondingly,
the convolutional decoder transforms these D feature maps back to C color channels. In the convo-
lutional setting slowness is measured by subtracting corresponding spatial locations in temporally
adjacent feature maps. In order to produce slow features a convolutional network must compensate
for the motion in the video sequence by producing spatially aligned activations for temporally ad-
jacent samples. In other words, in order to produce slow features the network must implicitly learn
to track common patterns by learning features which are invariant to the deformations exhibited by
these patterns in the temporal sequence. The primary mechanism for producing these invariances is
pooling in space and across features [5]. Spatial pooling induces local translation invariance in the
feature maps. Pooling across feature maps allows the network to potentially learn feature gropus
that are stable with respect to more general deformations.

The convolutional architecture was trained on contrast normalized video data consisting of 150, 000
frames extracted from YouTube videos, and tested on 20, 000 frames from different videos. Each
color frame was down-sampled to a 32×32 spatial resolution in order to match the resolution of the
CIFAR-10 dataset. Typical examples of features obtained by training fully connected architectures
on the same data are shown in Figure 5. Note the factorization of color from structural features that
is also commonly observed in the lower layers of networks trained with supervision [12].

In the following experiments, models with filter banks consisting of 32 kernels with 9 × 9 spatial
support were trained. The L2 pooling layer computes the local modulus across feature maps in
non-overlapping groups of four. Thus the output feature vector z consists of eight 32 × 32 feature
maps. Figures 6a and 6b show the decoders of two convolutional models trained with β = 0.1, 0.5,

6

(a) (b)

Figure 6: Pooled convolutional dictionaries trained with (a)β = 0.1 and (b) β = 0.5 slowness regu-
larization strengths.

Slowness

L1

L1 Pooling

Encoder
Convolution
+Rectification

Rec Frame 1

 Rec Frame 2
Decoder
 Convolution

Decoder
 Convolution

 Pooling

Encoder
Convolution
+Rectification

Figure 7: Block diagram of the convolutional model trained on pairs of frames showing the Siamese
architecture.

respectively, and a constant value of α. The filter bank trained with β = 0.1 exhibits almost no
coherence within each pool group; the filters are not visually similar nor do they tend to co-activate
at spatially neighboring locations. Most groups in the filter bank trained with β = 0.5 tend be
visually similar, corresponding to similar colors and/or geometric structures.

To verify the connection between slowness and metric learning, we evaluate the metric properties
of the learned features. It is well known that L2 distance in the extrinsic (pixel) space is not a reli-
able measure of semantic similarity. Maximizing slowness corresponds to minimizing the distance
between adjacent frames in code space, therefore neighbors in code space should correspond to tem-
poral neighbors. This claim can be tested by computing the nearest neighbors to a query frame in
code space, and verifying whether they correspond to the temporal neighbors of the query frame.
Figure 8a shows the top ten query results for a single frame (left column) in three spaces. The top
row shows the top ten neighbors in pixel space. The following three rows show the neighbors com-
puted in the feature spaces of models trained with progressively increasing slowness penalty (β).
Note that the last row appears to contain the most frames from the same video sequence. Figure
8b shows the result of a query in the CIFAR-10 dataset. The left column shows two query images
selected from the test set, the middle column shows the nearest neighbors in the metric space learned
by our top performing model, and the right column shows the nearest neighbors in pixel space. Al-
though the nearest neighbor in pixel space also belongs to the same category, the nearest neighbors
retrieved in the learned metric are much more similar in appearance to the queries.

To measure the temporal coherence of a representation Φ, we consider for a given query example
xt∗ the set of neighbors N (t∗, δ) = {t′ ; ‖Φ(xt∗) − Φ(xt′)‖ ≤ δ} as an estimator of the set of
true temporal neighbors Ntrue(t∗) = {t′ ; |t′ − t∗| ≤ ε}. We fix ε = 4 and we vary δ to obtain a
precision-recall curve for each representation Φ, evaluated on a test set of 20,000 contrast normalized
YouTube frames. Figure 9a shows that the models trained with slowness achieve better precision at
high recall, although they have slightly worse precision at low recall than the input representation.
This fact confirms that the resulting features are stable with respect to temporal variability, at the ex-
pense of a minimum loss of discriminability. We compare this to models trained with an L1 penalty
imposed on the output of the pooled representation, corresponding to convolutional group sparsity
[10]. These models do not make use of the temporal coherence assumption, and are referred to as
GSC 1-6 in Figure 9. Since the variability present in natural videos is likely to be uninformative
when it comes to object classification, one might expect that the slow-feature representation also

7

(a) (b)

Figure 8: Query results in the (a) video and (b) CIFAR-10 datasets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GSC1

GSC2

GSC3

GSC4

GSC5

GSC6

SF1

SF2

SF3

SF4

SF5

SF6

input

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pixels

GSC1

GSC2

GSC3

GSC4

GSC5

GSC6

SF1

SF2

SF3

SF4

SF5

SF6

(b)

Figure 9: Precision-Recall curves corresponding to the YouTube (a) and CIFAR-10 (b) dataset. We
compare contrast normalized pixel features, convolutional Group Sparse Coding models (GSC-β)
for different values of β, and convolutional slow feature model (3) (SF-β) also for different β. In
both datasets, the best performing model corresponds to β = 0.5.

provides a metric with improved consistency within object categories. This claim is then evalu-
ated in the CIFAR-10 object classification dataset, by replacing Ntrue(t∗) with the label indicator
Ntrue(i) = {i′ ; l(xi) = l(x̃′i)}, where l(i) is the label of the test example xi and l(x̃i′) is the label
of training example x̃i′ . Figure 9b shows again that the metric corresponding to slow-feature models
achieves better precision at high recall.

Pre-training is another popular alternative to leverage the information extracted from unsupervised
learning to supervised tasks. We performed experiments on CIFAR-10 using a deep convolutional
network, consisting in 3 layers of interleaved convolutions and L2 pooling, followed by a fully
connected layer. By initializing the first convolutional layer with the slow-feature convolutional
model trained on 170k YouTube video frames, we reduced the test error from 24% to 22%. Although
still far from the state-of-the-art results, these preliminary results show that temporal coherence has
the potential to further improve purely supervised deep architectures.

7 Discussion

Video data provides a virtually infinite source of information to learn meaningful and complex vi-
sual invariances. Slow feature learning has a long history at attempting to explain the mechanisms
for learning such invariances. In this work we provide an auto-encoder formulation of the prob-
lem, and show that the resulting models indeed become more stable to naturally occurring temporal
variability, while keeping enough discriminative power.

While temporal slowness is an attractive prior for good visual features, in practice it involves opti-
mizing conflicting objectives, namely invariance and discriminability. In other words, perfectly slow
features cannot be informative. An alternative is to replace the small temporal velocity prior with
small temporal acceleration, leading to a criteria that linearizes observed variability. The resulting

8

representation offers potential advantages, such as extraction of both locally invariant and locally
covariant features.

Although pooling representations are widespread in visual and audio recognition architectures, much
is left to be understood. In particular, a major question is how to learn a stacked pooling represen-
tation, such that its invariance properties are boosted while controlling the amount information lost
at each layer. This could be possible by replacing the linear decoder of model (3) with a non-linear
decoder which can be used to reconstruct the input from pooled representations.

References
[1] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and new

perspectives. Technical report, University of Montreal, 2012.

[2] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 35(8):1872–1886, 2013.

[3] Joan Bruna, Arthur Szlam, and Yann LeCun. Signal recovery from pooling representations. In
ICML’2014.

[4] Charles F. Cadieu and Bruno A. Olshausen. Learning intermediate-level representations of form and
motion from natural movies. Neural Computation 2012.

[5] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In ICML’2013.

[6] Rostislav Goroshin and Yann LeCun. Saturating auto-encoders. In ICLR, 2013.

[7] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In ICML’2010.

[8] Raia Hadsell, Soumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant map-
ping. In CVPR’2006.

[9] Hyvärinen, Aapo, Karhunen, Juha, Oja, and Erkki. Independent component analysis, volume 46. John
Wiley & Sons, 2004.

[10] Koray Kavukcuoglu, MarcAurelio Ranzato, Rob Fergus, and Yann LeCun. Learning invariant features
through topographic filter maps. In CVPR’2009.

[11] Christoph Kayser, Wolfgang Einhauser, Olaf Dummer, Peter Konig, and Konrad Kding. Extracting slow
subspaces from natural videos leads to complex cells. In ICANN’2001.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, volume 1, page 4, 2012.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proc. IEEE, 86(11):2278–2324, 1998.

[14] Jorn-Philipp Lies, Ralf M Hafner, and Matthias Bethge. Slowness and sparseness have diverging effects
on complex cell learning. 10.

[15] Hossein Mobahi, Ronana Collobert, and Jason Weston. Deep learning from temporal coherence in video.
In ICML’209.

[16] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy employed
by v1? Vision research, 37(23):3311–3325, 1997.

[17] M.A Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for deep belief networks. Ad-
vances in neural information processing systems, 20:1185–1192, 2007.

[18] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Galrot, and Yoshua Bengio. Contractive auto-encoders:
Explicit invariance during feature extraction. In ICML, 2011.

[19] Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation. Annual
review of neuroscience, 24(1):1193–1216, 2001.

[20] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and compos-
ing robust features with denoising autoencoders. Technical report, University of Montreal, 2008.

[21] Laurenz Wiskott and Terrence J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances.
Neural Computation 2002.

9

