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ABSTRACT

Model-based reinforcement learning (RL) methods are appealing in the offline
setting because they allow an agent to reason about the consequences of actions
without interacting with the environment. Prior methods learn a 1-step dynam-
ics model, which predicts the next state given the current state and action. These
models do not immediately tell the agent which actions to take, but must be in-
tegrated into a larger RL framework. Can we model the environment dynamics
in a different way, such that the learned model does directly indicate the value of
each action? In this paper, we propose Contrastive Value Learning (CVL), which
learns an implicit, multi-step model of the environment dynamics. This model
can be learned without access to reward functions, but nonetheless can be used to
directly estimate the value of each action, without requiring any TD learning. Be-
cause this model represents the multi-step transitions implicitly, it avoids having to
predict high-dimensional observations and thus scales to high-dimensional tasks.
Our experiments demonstrate that CVL outperforms prior offline RL methods on
complex continuous control benchmarks.

1 INTRODUCTION

While the offline RL setting is relevant to many real-world applications where the ability for online
data collection is limited, it often requires RL algorithms to find policies that are not well-supported
by the training data. Instead of learning via trial-and-error, offline RL algorithms must leverage
logged historical data to learn about the outcome of different actions, potentially by capturing envi-
ronment dynamics as a proxy signal. Many prior approaches for this offline RL setting have been
proposed, whether in model-free (Wu et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020) or
model-based (Kidambi et al., 2020; Yu et al., 2021) settings. Our focus will be on those that address
this prediction problem head-on: by learning a predictive model of the environment which can be
used in conjunction with most model-free algorithms.

Prior model-based methods (Yu et al., 2020b; Argenson and Dulac-Arnold, 2020; Kidambi et al.,
2020; Yu et al., 2021) learn a model that predicts the observation at the next time step. This model is
then used to generate synthetic data that can be passed to an off-the-shelf RL algorithm. While these
approaches can work well on some benchmarks, they can be complex and expensive: the model
must predict high-dimensional observations, and determining the value of an action may require
unrolling the model for many steps. Learning a model of the environment has not made the RL
problem any simpler. Moreover, as we will show later in the paper, the environment dynamics
are intertwined with the policy inside the value function; model-based methods aim to decouple
these quantities by separately estimating them. On the other hand, we show that one can directly
learn a long-horizon transition model for a given policy, which is then used to estimate the value
function. A natural use case for learning an occupancy measure from unlabelled data is multi-task
pretraining, where the implicit dynamics model is trained on trajectory data across a collection of
tasks, often exhibiting positive transfer properties. As we demonstrate in our experiments, this multi-
task occupancy measure can then be finetuned using reward-labelled states on the task of interest,
greatly improving performance upon existing pretraining methods as well as tabula rasa approaches.

In this paper, we propose to learn a different type of model for offline RL, a model which (1) will not
require predicting high-dimensional observations and (2) can be directly used to estimate Q-values
without requiring either model-based rollouts or model-free temporal difference learning. Precisely,
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Figure 1: Contrastive Value Learning: A stylized illustration of trajectories (grey) and the rewards at future
states (e.g., +8, -5). (Left) Q-learning estimates Q-values by “backing up” the rewards at future states. (Right)
Our method learns the Q-values by fitting an implicit model to estimate the likelihoods of future states (blue),
and taking the reward-weighted average of these likelihoods.

we will learn an implicit model of the discounted state occupancy measure, which answers the
question “where will the agent be in the time-averaged future?” We will learn this implicit model
via contrastive learning, treating it as a classifier rather than a generative model of observations.
Once learned, we predict the likelihood of reaching every reward-labeled state. By weighting these
predictions by the corresponding rewards, we form an unbiased estimate of the Q-function. Whereas
methods like Q-learning estimate the Q-function of a state “backing up” reward values, our approach
goes in the opposite direction, “propagating forward” predictions about where the agent will go.

We name our proposed algorithm Contrastive Value Learning(CVL). CVL is a simple algorithm for
offline RL which learns the future state occupancy measure using contrastive learning and re-weights
it with the future reward samples to construct a quantity proportional to the true value function. Be-
cause CVL represents multi-step transitions implicitly, it avoids having to predict high-dimensional
observations and thus scales to high-dimensional tasks. Using the same algorithm, we can handle
settings where reward-free data is provided, which cannot be directly handled by classical offline
RL methods such as FQI (Munos, 2003) or BCQ (Fujimoto et al., 2019). We compare our proposed
method to competitive offline RL baselines, notably CQL (Kumar et al., 2020) and CQL+UDS (Yu
et al., 2022) on an offline version of the multi-task Metaworld benchmark (Yu et al., 2020a), and find
that CVL greatly outperforms the baseline approaches as measured by the rliable library (Agar-
wal et al., 2021b). Additional experiments on image-based tasks from this same benchmark show
that our approach scales to high-dimension tasks more seamlessly than the baselines. We also con-
duct a series of ablation experiments highlighting critical components of our method.

2 RELATED WORKS

Prior work has given rise to multiple offline RL algorithms, which often rely on behavior regular-
ization in order to be well-supported by the training data. The key idea of offline RL methods is
to balance interpolation and extrapolation errors, while ensuring proper diversity of out-of-dataset
actions. Popular offline RL algorithms such as BCQ and CQL rely on a behavior regularization
loss (Wu et al., 2019) as a way to control the extrapolation error. This regularization term ensures
that the learned policy is well-supported by the data, i.e. does not stray too far away from the logging
policy. The major issue with current offline RL algorithms is that they fail to fully capture the entire
distribution over state-action pairs present in the training data.

To directly learn a value function using policy or value iteration, one needs to have information about
the transition model in the form of sequences of state-action pairs, as well as the reward emitted by
this transition. However, in some real-world scenarios, the reward might only be available for a small
subset of data. For instance, in the case of recommending products available in an online catalog
to the user, the true long-term reward (user buys the product) is only available for users who have
browsed the item list for long enough and have purchased a given item. It is possible to decompose
the value function into reward-dependent and reward-free parts, as was done by (Barreto et al., 2016)
through the successor representation framework (Dayan, 1993). More recent approaches (Janner
et al., 2020; Eysenbach et al., 2020; 2022) use a generative model to learn the occupancy measure
over future states for each state-action pair in the dataset; its expectation corresponds to the successor
representation. However, learning an explicit multi-step model such as (Janner et al., 2020) can be
unstable due to the bootstrapping term in the temporal difference loss. Similarly to model-based
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approaches, our method will learn a reward-free representation of the world, but will do so without
having to predict high-dimensional observations and without having to do costly autoregressive
rollouts. Thus, while our critic is trained without requiring rewards, it is much more similar to a
value function than a standard 1-step model.

Learning a conditional probability distribution over a highly complex space can be a challenging
task, which is why it is often easier to instead approximate it using a density ratio specified by
an inner product in a much lower-dimensional latent space. To learn an occupancy measure over
future states without passing via the temporal difference route, one can use noise-contrastive esti-
mation (NCE, Gutmann and Hyvärinen, 2010; Oord et al., 2018) to approximate the corresponding
log ratio of densities as an implicit function. Contrastive learning was originally proposed as an
alternative to classical maximum likelihood estimation, but has since then seen successes in static
self-supervised learning (He et al., 2020; Chen et al., 2020). In reinforcement learning, NCE was
shown to improve the robustness of state representations to exogenous noise (Srinivas et al., 2020;
Mazoure et al., 2020; Agarwal et al., 2021a) and, more recently, to be an efficient replacement for
traditional goal-conditioned methods (Eysenbach et al., 2022).

3 PRELIMINARIES

Reinforcement learning We assume a Markov decision process M defined by the tuple M =
〈S, S0,A, T , r, γ〉, where S is a state space, S0 ⊆ S is the set of starting states, A is an action
space, T = P[·|st, at] : S ×A → ∆(S) is a one-step transition function1, r : S ×A → [rmin, rmax]
is a reward function and γ ∈ [0, 1) is a discount factor. The system starts in one of the initial states
s0 ∈ S0. At every timestep t = 1, 2, 3, .., the policy π : S → ∆(A), samples an action at ∼ π(·|ot).
The environment transitions into a next state st+1 ∼ T (·|st, at) and emits a reward rt = r(st, at).
The aim is to learn a Markovian policy π(a | s) that maximizes the discounted sum of returns over
an episode of length H:

max
π∈Π

EPπ0:H ,S0

[
H∑
t=0

γtr(st, at)

]
, (1)

where Pπt:t+K denotes the joint distribution of {st+k, at+k}Kk=1 obtained by executing π in the en-
vironment for K timesteps starting at timestep t.

We assume that the offline RL algorithm cannot interact with the environment, but instead must learn
from an offline dataset of logged trajectories {(s0, a0, s1, a1, · · · )}. Value-based RL algorithms
maximize cumulative episodic rewards by estimating the state-action value function under a policy
π:

Qπ(st, at) = EPπt [

H∑
k=1

γkr(st+k, at+k)|st, at], (2)

for st ∈ S, at ∈ A. Alternatively, the value function can be written as the expectation of the reward
over the discounted occupancy measure:

Qπ(st, at) =
1

1− γ
Es,a∼Pπt:H(st,at),π(s)[r(s, a)], (3)

where Pπt:H(s|st, at) = (1 − γ)
∑H

∆t=1 γ
∆t−1P[St+∆t = s|st, at;π] as defined in Janner et al.

(2020). Note that the occupancy measure can equivalently be re-written in terms of the geometric
distribution over the time interval [0,∞) for infinite-horizon rollouts:

Pπ0:∞(s|s0, a0) = E∆t∼Geom(1−γ)[P[St+∆t|s0, a0; ∆t;π]] (4)

This decomposition of the value function has already been used in previous works based on the
successor representation (Dayan, 1993; Barreto et al., 2016) and, more recently, γ-models (Janner
et al., 2020). We will use it to efficiently learn an implicit density ratio proportional to the state
occupancy measure using contrastive learning.

1∆(X ) denotes the entire set of distributions over the space X .
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Noise-contrastive estimation Noise-contrastive estimation (NCE, Gutmann and Hyvärinen,
2010) spans a broad class of learning algorithms, at the core of which is negative sampling (Mikolov
et al., 2013), i.e., learning an implicit metric space from positive and negative examples. Given
reference samples, samples from a positive distribution (i.e., high similarity with reference points)
and samples from a negative distribution (i.e., low similarity with reference points), contrastive
learning methods learn an embedding where positive examples are located closer to the reference
points than negative examples. One of the most well-known and commonly used NCE objectives is
InfoNCE (Oord et al., 2018), which solves

max
φ,ψ∈Φ

Ex,y,y
ï

log
eφ(x)>ψ(y)∑

y′∈y∪y e
φ(x)>ψ(y′)

ò
(5)

over some hypothesis class Φ : {φ : X → Z} for input space X , latent space Z , x ∼ P(X ),
y ∼ Ppositives(X ) and y ∼ Pnegatives(X ). Contrastive learning has been widely studied in the static
unsupervised/ supervised learning settings (Hjelm et al., 2018; Chen et al., 2020; He et al., 2020),
as well as in reinforcement learning (Kim et al., 2018; Mazoure et al., 2020) for learning state
representations with desirable properties such as alignment and uniformity (Wang and Isola, 2020).

Solving Equation (5) for (φ∗, ψ∗) yields a critic f : X × Y → R which decomposes as f∗(x, y) =
φ∗(x)>ψ∗(y) and, at optimality2, captures the log-ratio of Ppositives(X ) and Pnegatives(X ):

f∗(x, y) ∝ log
P[y|x]

P[y]
. (6)

Implicit dynamics models via NCE. Various prior works (Du and Mordatch, 2019; Mazoure
et al., 2020; Nachum and Yang, 2021) have studied the use of NCE to approximate a single-step
dynamics model, where triplets (st, at, st+1) have higher similarity than (st, at, st′ 6=t+1), effectively
defining positive and negative distributions over trajectory data. More recently, contrastive goal-
conditioned RL (Eysenbach et al., 2022) used InfoNCE to condition the critic on goal states sampled
from the replay buffer. These methods use asymetric encoders, using φ(st, at) and ψ(st+∆t), where
positive samples of st+∆t are sampled from the discounted state occupancy measure for t ≥ 0.

The conditional probability distribution of future states given the current state-action pair can be effi-
ciently estimated using an implicit model trained via contrastive learning over positive and negative
feature distributions, as shown in Equation (7).

`InfoNCE(φ, ψ) = Est,at,∆t,∆t
ï
− log

eφ(st,at)
>ψ(st+∆t)∑

∆t′∈∆t∪∆t e
φ(st,at)>ψ(st+∆t′ )

ò
(7)

Minimizing `InfoNCE over trajectory data yields a critic which, at optimality, approximates the future
discounted state occupancy measure up to a multiplicative term as per Equation (6),

f∗(st, at, st+∆t) ∝ log
P[st+∆t|st, at;π]

P[st+∆t;π]
. (8)

Intuitively, f∗ approximates aH-step dynamics model which has an implicit dependence on policy π
that collected the training data. Ordinarily, training state-space models is hard when the dimensions
are large, e.g. image-based domains. However, by using contrastive learning, we can learn this
model without having to require it predict high-dimensional observations, as similarity is evaluated
in a lower-dimensional latent space (observe that in Equation (7) the inner product is computed inZ ,
whose dimension we control, instead of X , which is specified externally). An apparent limitation
of the approach is that the probability of future states st+∆t is recovered only up to a constant.
However, it turns out that we can still use this model to get accurate estimates of the Q-values, as is
described in the next section.

4 ESTIMATING AND MAXIMIZING RETURNS VIA CONTRASTIVE LEARNING

In this section, we show how NCE can be used to learn a quantity proportional to a value function,
and how the later can be used in a policy iteration scheme.

2See Ma and Collins (2018) for exact derivation.
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4.1 ESTIMATING Q-VALUES USING THE CONTRASTIVE MODEL

As shown in Equation (3), the Q-function at (st, at) can be thought of as evaluating the reward
function at states sampled from the discounted occupancy measure Pπt:H(st, at). That is, to estimate
a quantity akin to Qπ , we can first estimate the occupancy measure and take a weighted average of
rewards over future states using the probabilities from the log-density ratio learned by the contrastive
model. Precisely, Equation (3) corresponds to using an importance-weighted estimator, where an
optimal critic that minimizes Equation (7) approximates the density ratio from Equation (8).

The critic itself can be trained using the occupancy measure formulation specified in Equation (4)
over all state-action pairs in a given episode. However, Equation (4) needs to be re-adjusted to
account for finite-horizon truncation of the geometric mass function presented in Definition 1.

Definition 1 (Truncated distribution) Let X be a random variable with distribution function FX .
Y is a called the truncated distribution of X with support [m,M ] s.t. 0 < m < M if

P[Y = y] =
FX(y −m)− FX(y − 1−m)

FX(M)− FX(m)
, y = m,m+ 1,m+ 2, ..M (9)

We denote the special case of the truncated geometric distribution as TruncGeom(p,m,M).

The contrastive objective to train the critic to approximate the discounted occupancy measure over
a dataset D is then

`OM-InfoNCE(φ, ψ) = E st,at∼D,
∆t∼TruncGeom(1−γ,t,H),

∆t∼TruncGeom(1−γ,t′ 6=t,H)

ï
− log

eφ(st,at)
>ψ(st+∆t)∑

∆t′∈∆t∪∆t e
φ(st,at)>ψ(st+∆t′ )

ò
(10)

It is possible that multiple optimal critics exist s.t. the multiplicative proportionality constant de-
pends on the action. To avoid this, we adopt a similar approach as Eysenbach et al. (2022) and
introduce a regularization term over the partition function, making the critic training objective be

`Critic = `OM-InfoNCE + λPartitionEst,at,∆t,∆t[(log
∑

∆t′∈∆t∪∆t

eφ(st,at)
>ψ(st+∆t′ ))2] (11)

Now, suppose we found an optimal critic f . Combining Equation (4) with Definition 1, we obtain
the following form of the Q-function for an optimal critic f which minimizes Equation (7):

QNCE(st, at) =

∞∑
∆t=1

γ∆t−1

∫
st+∆t

r(st+∆t)P[st+∆t|st, at;π]dst+∆t

∝ 1

1− γ
E∆t∼TruncGeom(1−γ,t,H)

ï ∫
st+∆t

r(st+∆t)e
f(st,at,st+∆t)P[st+∆t;π]dst+∆t

ò
=

1

1− γ
E∆t∼TruncGeom(1−γ,t,H)[EPπt+∆t

[r(st+∆t)e
f(st,at,st+∆t)]]

(12)

Here, the offset ∆t is a random variable sampled from TruncGeom(1 − γ, t,H) where H is the
horizon of the MDP3. We can also show that Q(s, a) < Q(s, a′) =⇒ QNCE(s, a) < QNCE(s, a′)
for all s ∈ S and a, a′ ∈ A, which makes the contrastive Q-values suitable for policy evaluation.
However, we do not, in general, expect QNCE to recover the optimal Q function, as the recovered
Q-values are on-policy with respect to π.

4.2 EFFICIENT ESTIMATION USING RANDOM FOURIER FEATURES

A major issue with using QNCE out-of-the-box is that it is computationally expensive, requiring
evaluation of the inner product φ(st, at)

>ψ(st+∆t) with a large number of future states and hence
multiple forward passes through ψ. The underlying cause of this computational overhead is the RBF

3While using the truncated geometric distribution makes Equation (12) proportional to the true value func-
tion, the relation becomes an equality in the infinite-horizon case since limH→∞ 1− (1− p)H−m = 1.
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kernel term eφ(st,at)
>ψ(st+∆t). If we instead used a linear kernel, the constant term φ(st, at) would

be factored out, and we could separately keep track of reward-weighted future expected features.
This would (1) reduce the computational complexity of N actor updates over D from O(|D|N) to
O(|D| + N) and (2) reduce the variance of the representation if averaging features of future states
using exponential moving average. It turns out that the RBF kernel can be approximately linearized
by using random Fourier features (Rahimi and Recht, 2007; Nachum and Yang, 2021).

Lemma 1 Let x,y ∈ Rd be unit vectors, and let FW,b(x) =
»

2e
d cos(Wx + b) where W ∼

Normal(0, I) and b ∼ Uniform(0, 2π). Then, E[FW,b(x)>FW,b(y)] = ex
>y .

Lemma 1 is a straightforward modification of the result from Rahimi and Recht (2007) and allows
us to reduce the RBF kernel to an expectation over d-dimensional random feature vectors:

QNCE(st, at) =
1

1− γ
E∆t∼TruncGeom(1−γ,t,H)[EP(st+∆t;π)[e

φ(st,at)
>ψ(st+∆t)r(st+∆t)]]

=
1

1− γ
FW,b(φ(st, at))

>E∆t∼TruncGeom(1−γ,t,H)[EP(st+∆t;π)[FW,b(ψ(st+∆t))r(st+∆t)]]

=
1

1− γ
FW,b(φ(st, at))ξ(π)

(13)
The advantage of using the RFF approximation is that it allows us to split the exponential term
inside the expectation and separately keep track of the policy-dependent, reward-weighted future
state probability term, while the state-action dependence term is learned online. Specifically, we
keep track of ξ(π) via an exponential-moving average during the entire duration of training4.

4.3 LEARNING THE POLICY

Once the policy evaluation phase completes and we have an estimate QNCE, we optimize a policy
to maximize the returns predicted by this Q-value. We can decode the policy by minimizing its
Kullback-Leibler divergence to the Boltzmann Q-value distribution (see Haarnoja et al. (2018)),
which can be efficiently done by minimizing the following objective:

`Policy(θ) = Est∼D
ï
DKL

Å
πθ(st)

∣∣∣∣∣∣∣∣ eQ(st,·)/τ∫
a∈A e

Q(st,a)/τda

ãò
. (14)

Note that in discrete action spaces, minimizing Equation (14) leads to a soft version of the greedy
policy decoding πgreedy(s) = arg maxa∈AQNCE(s, a) for s ∈ S. In practice, we approximate the
KL term in Equation (14) using Na Monte-Carlo action samples.

Decoding π in such a way can lead to sampling out-of-distribution actions in regions where the Q-
function might be inaccurate due to poor dataset coverage. To mitigate this issue, we follow prior
work (Cobbe et al., 2021; Zhao et al., 2021; Schwarzer et al., 2021) and add a behavior cloning term
which prevents the new policy from straying too far away from the data:

`BC(θ) = Ea,s∼D[log πθ(a|s)] + τEs∼D[H(πθ(s))] . (15)
for entropy estimator H(π(s)) = −Ea∼π(s)[log π(a|s)]. We add this extra loss to `Policy to learn a
policy π which prioritizes high Q-values that are well-supported by the offline dataset D. Thus, the
final policy optimization objective becomes

`Policy(θ) = `Policy(θ) + λBC`BC(θ) . (16)

The policy found by minimizing `Policy has, on average, non-decreasing returns, as per Lemma 2.

Lemma 2 (Contrastive policy improvement) Let µ be a policy and let QµNCE =
minφ,ψ∈Φ EDµ [`Critic(φ, ψ)]. If

π(s) = arg min
π∈Π

DKL

Å
π(s)

∣∣∣∣∣∣∣∣ eQ
µ
NCE(st,·)/τ∫

a∈A e
QµNCE(st,a)/τda

ã
(17)

then Qπ(s, a) ≥ Qµ(s, a) for all (s, a) ∈ Dµ.
4This idea can be adapted to online learning settings as well by clipping policy improvement steps so that ξ

doesn’t change too fast under newly collected data.
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Algorithm 1: Contrastive Value Learning (CVL)
Input : Dataset D ∼ µ, ψ, φ networks, temperature parameter τ , exponential moving average

parameter β
1 for epoch j = 1, 2, .., J do
2 for minibatch B ∼ D do

/* Update density ratio estimator using Equation (11) */

3 Update φ(j+1), ψ(j+1) using ∇φ,ψ`Critic(φ
(j), ψ(j)) ;

/* Estimate the contrastive Q-function */
4 Q(s, a)← Equation (13) if using RFF, otherwise Equation (12);

/* Decode policy from Q-function using Equation (16) */
5 Update πθ using∇θ{`Policy(θ)} ;

/* Update future state encoder using EMA */

6 ψ(j+1) ← βψ(j+1) + (1− β)ψ(j) ;
/* Update future state features weighted by rewards */

7 ξ(j+1) ← ψ(j+1) · B[rt+∆t] ;

The proof of Lemma 2 is located in Section 6.2. Specifically, Lemma 2 tells us that using CVL as a
surrogate Q-function corresponds to one step of conservative policy improvement, where π satisfies
soft constraints of Equation (14) and small EDµ [DKL(π(s)||µ(s))] via the BC term.

4.4 PRACTICAL IMPLEMENTATION

We now present our complete method, which can be viewed as an actor-critic method for offline RL.
We learn the critic via contrastive learning (Equation (11)) and learn the policy via Equation (16).
We will interleave these steps in most of our experiments, but experiments in Section 5.1 show that
the critic can be pretrained e.g. in the presence of unlabeled data from related tasks. We summarize
the method in Algorithm 1.

4.5 INTERPRETATIONS AND CONNECTIONS WITH PRIOR WORK

The main distinction between Contrastive Value Learning and prior works consists specifically in
representing the Q-values in a two-step decomposition: the Q-value is represented as an occupancy
measure weighted by the reward signal; the occupancy measure itself is represented using a pow-
erful likelihood-based model parameterized using an implicit function. Decoupling the learning of
the occupancy measure from reward maximization allows, among others, for efficient pretraining
strategies on unlabeled data, i.e. trajectory data without reward information, and can be used to
learn provably optimal state representations for any reward function (Touati and Ollivier, 2021).
While CVL is similar in spirit to the successor representation (Dayan, 1993; Barreto et al., 2016),
the occupancy measure learned by CVL is much richer than that of SR, as it captures the entire
distribution over future states instead of only the first moment. Another method, γ-models (Janner
et al., 2020), is closely related to CVL, but uses a surrogate single-step TD objective to learn the
occupancy measure, similarly to C-learning (Eysenbach et al., 2020).

5 EXPERIMENTS

Our experiments aim to answer three questions. First, we study how CVL compares with baseline
approaches on a large benchmark of state-based tasks. Our second set of experiments look at image-
based tasks, testing the hypothesis that CVL scales to these tasks more effectively than the baselines.
We conclude with ablation experiments. Our main point of comparison will be a high-performing
offline RL method, CQL (Kumar et al., 2020). While CVL learns an implicit model, that model
is structurally much more similar to value-based RL methods than model-based methods, motivat-
ing our comparison to a value-based baseline (CQL). We will also include behavioral cloning as a
baseline.
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Figure 2: Metaworld benchmark. (Left) We evaluate CVL on 50 tasks from Metaworld, a subset of which
are shown here. (Right) Compared with three offline RL baselines, CVL achieves statistically-significant im-
provements in offline performance. Results are reported over 5 random seeds.

Metaworld. We first test our approach on the complex MetaWorld benchmark (Yu et al., 2020a),
which consists of 50 robotic manipulation tasks such as open a door, pick up an object, reach a
certain area of the table, executed by a robotic arm (see Figure 2 (left)). This domain is an ideal
testbed for CVL, as it allows for both full-state and image-based experiments, has a dense and in-
formative reward function thus decoupling the problem of representation learning from exploration,
and is challenging for model-free methods which leaves room for improvement. While the original
MetaWorld domain has been used to evaluate online RL agents, we create an ad hoc dataset suitable
for offline learning. To do so, we train Soft Actor-Critic (Haarnoja et al., 2018) from full states on
each of the 50 tasks separately for 500k frames, and save the resulting replay buffer, which forms
the training dataset. As shown in Figure 2 (right), CVL manages to considerably improve upon
strong baselines such as behavior cloning, CQL and CQL with UDS (Yu et al., 2022)5. We report
the results on all tasks of the MetaWorld suite over 5 random seeds, according to the aggregation
methodology proposed by Agarwal et al. (2021b). Per-environment scores are available in Table 4.

Table 1: Offline RL with Images. We compare CVL to baselines on
four offline, image-based tasks from MetaWorld offline image-based
tasks. Average ± std. dev. are shown for 5 random seeds.

Task BC CQL CVL

door-close 571 ± 9.9 4249 ± 269.9 4480 ± 305.1
door-open 178 ± 4.0 2099 ± 0.9 3389 ± 76.6
drawer-close 2414 ± 1736.5 3964 ± 1634.9 2177 ± 1679.5
drawer-open 1030 ± 104.2 820 ± 56.0 2543 ± 115.0

Image-based experiments Our
working hypothesis is that con-
trastive formulation of the value
function acts in itself as a pre-
training mechanism via the prism
of representation learning. For this
reason, we conduct further experi-
ments on 4 image-based tasks from
the MetaWorld suite (similarly to
full-states, the dataset was obtained
from the SAC replay buffer trained
on rendered images).

Results presented in Table 1 show that CVL is also able to learn meaningful Q-values and achieve
good empirical performance on hard image-based tasks.

5.1 ABLATION EXPERIMENTS.

When is pretraining the model useful? In theory, the model can be pretrained on the data from
other tasks, however, we do not always expect this to help (e.g., when the pretraining tasks are
very different). We ran an experiment to test this capability. The results, shown in Fig. 3, show
that pretraining sometimes speeds up learning. In particular, we observe that pretraining is effective
when the pretraining tasks are similar to the target task and contain a diverse set of state-action pairs.

How reliable is theQNCE approximation? Given that contrastive Q-values are proportional to the
true Q-function, a natural question to ask is how good isQNCE at capturing the topology ofQ? First,
we conduct an ablation demonstrating how linearizing the RBF kernel via random Fourier features
provides a performance gain on the offline MetaWorld tasks Figure 4. Specifically, we hypothesize
that this is due to the reduced variance of the RFF Q-value estimator which keeps track of future
reward-weighted state features using a rolling average.

Next, we qualitatively assess the similarity between contrastive and true Q-values on the continuous
Mountain Car environment (Moore, 1990) by first pre-training SAC online on the task and then

5For CQL+UDS, we combine all data from the current task with unlabeled data from related tasks with
rewards set to 0. In the absence of related tasks, we pre-train the critic on the current task with 0 rewards.
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Figure 3: Offline Learning Curves for Metaworld. Episode return curves as a function of gradient
steps taken during training on 10 random MetaWorld tasks; curves show mean± standard deviation.
Pretraining the reward-free occupancy measure on related tasks allows CVL to outperform baseline
approaches and even CVL trained tabula rasa.

Figure 4: CVL with RFF (or-
ange) performs slightly better
than without RFF (blue).

Figure 5: Visualizing the estimated Q-values. (Left) Normalized
logQNCE learned by CVL offline on the Mountain Car environment.
(Right) NormalizedQ learned by online SAC on the same environment.

fitting CVL to the data from SAC’s replay buffer. Figure 5 (left) shows the contrastive Q-values on a
log-scale, evaluated on trajectories from the SAC replay; for comparison, we also show the Q-values
learned by online SAC in Figure 5 (right). Note that the value function learned by CVL conserves
the same topology as the true value function, up to a multiplicative rescaling.

6 DISCUSSION

This paper presented an RL algorithm that learns a contrastive model of the world, and uses that
model to obtain Q values by estimating the likelihood of visiting future states. Our experiments
demonstrate that this approach can effectively solve a large number of offline RL tasks, includ-
ing from image-based observations. Our pretraining results hinted that CVL can be pretrained on
datasets from other tasks, and we are excited to pretrain our model on datasets of increasing size.

Limitations. One limitation of our approach is that it corresponds to a single step of policy im-
provement. This limitation might be lifted by training the contrastive model using a temporal dif-
ference update for the contrastive model (Eysenbach et al., 2020; Blier et al., 2021). A second
limitation is that the RFF approximation can be poor when the feature dimension is small. We tried
to train the contrastive model using non-exponentiated features (akin to HaoChen et al. (2021)),
but failed to achieve satisfactory results. Figuring out how to effectively train these spectral (i.e.,
non-exponentiated) models remains an important question.

9
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REPRODUCIBILITY STATEMENT

We ensure reproducibility of our method via a) releasing the offline MetaWorld dataset that we
used for our main results to allow the community to conduct further research on this domain upon
publication, b) releasing the code used to obtain our results upon publication and c) detailing the
hyperparameters and design choices for the implementation of CVL and the computational resources
used for our experiments in Section 6.1.
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APPENDIX

REPRODUCIBILITY CHECKLIST

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? Yes
(b) Did you describe the limitations of your work? See end of Section 4
(c) Did you discuss any potential negative societal impacts of your work? N/A
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? Yes
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? Yes, they are
outlined in the lemmas.

(b) Did you include complete proofs of all theoretical results? See Appendix Section 6.2
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? Code will be release
upon publication, along with the offline Metaworld dataset.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? See Appendix Section 6.1

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Yes, we include multiple various uncertainty estimates and
measures of central tendency, e..g as outlined in Agarwal et al. (2021b) over 5
random replicates (i.e. seeds)

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? See Appendix Section 6.1

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? N/A
(b) Did you mention the license of the assets? N/A
(c) Did you include any new assets either in the supplemental material or as a URL? Due

to the large size of the offline Metaworld dataset, we will release the code required
to re-generate it exactly upon publication.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? N/A
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(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? N/A

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? N/A

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? N/A

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? N/A

6.1 EXPERIMENTAL DETAILS

Model architecture All algorithms (baselines as well as CVL) were based on a common archi-
tecture, where an encoder (IMPALA (Espeholt et al., 2018) for image data and two layer DenseNet
MLP (Huang et al., 2017) for full-states) generated state features which, combined with actions gave
rise to the Q-value and the policy (we used a diagonal Gaussian policy with a Tanh bijector, as is
common for continuous control tasks). The main difference of CVL with the baselines is that the
critic is defined implicitly via the dot-product of current state-action features passed through one
encoder, and future state features passed into a separate DenseNet. The output of both encoders
was optionally normalized using `2 norm. All methods had a LayerNorm layer (Ba et al., 2016) in
between each linear layer to ensure proper feature scaling.

Hyperparameter Value

Learning rate 3× 10−4

Batch size (all but CVL) 512
Discount factor 0.99
Framestack No
Max gradient norm 100
MLP structure 256× 256 DenseNet
Encoder (full-state) 256× 256 DenseNet MLP
Encoder (pixels) IMPALA
Add LayerNorm in between all layers Yes

Table 2: Hyperparameters that are consistent between methods.

Hyperparameter Value

CVL

Batch size H
Number of future action samples Na 10
InfoNCE temperature 1
Partition function coefficient λPartition 0.001
BC coefficient λBC 0 (Mountain Car), 0.1 (rest)
RFF Yes
`2-normalize MLP outputs Yes

CQL

Regularization coefficient 1

BC

Entropy regularization coefficient 0.1

Table 3: Hyperparameters that are different between methods.

All experiments were run on the equivalent of 8 V100 GPUs with 64 Gb of RAM and 8 CPUs.
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Dataset composition The offline MetaWorld dataset was constructed by first pre-training SAC on
all 50 tasks from full-states for 500k environment interactions. The replay buffer at the end of the
training was then used as training dataset for BC, CQL, CQL+UDS and CVL. An identical approach
was used to construct the image-based MetaWorld datasets and the Mountain Car dataset.

Pretraining setup When pretraining CVL, we first optimize the critic on unlabeled data from
dataset for all the semantically related tasks, i.e. tasks which belong to the same domain, and then
finetune both the critic and the policy on reward-labeled data from the target task. Semantically
related tasks in MetaWorld are easily identifiable by their domain name, e.g. drawer-open and
drawer-close belong to the drawer domain. We use a similar approach when pretraining
CQL+UDS, where we perform TD updates with all rewards equal to 0 during the pretraining phase.

6.2 PROOFS

Proof 1 (Random Fourier features approximation, Lemma 1)

For unit vectors x, y ∈ Rd, d > 0,Å…
2

d
cos(Wx+ b)

ã>Å…
2

d
cos(Wy + b)

ã
= exp

{
−||x− y||22/2

}
= exp

{
−(||x||22 − 2x>y + ||y||22)/2

}
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e

(18)

by re-arranging the terms in the result from Rahimi and Recht (2007). Therefore,

ex
>y =
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2e
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d
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Proof 2 (CVL induces a single-step of policy improvement, Lemma 2) Since, for the optimal
critic f∗,

ef
∗(st,at,st+∆t) ∝ P[st+∆t|st, at;µ]

P[st+∆t;µ]
. (20)

point-wise for every (st, at, st+∆t) ∈ Dµ, then, for α > 0,

ef
∗(st,at,st+∆t) = α

P[st+∆t|st, at;µ]

P[st+∆t;µ]
. (21)

Now, the following relation holds using the previous result

QµNCE(st, at) =
1

1− γ
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Using this relation yields
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It follows that
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(24)
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Now, we invoke Lemma 2 from Haarnoja et al. (2018) by using the equivalence of the policy decoded
from contrastive Q-values to the policy found by soft policy iteration, which concludes the proof.

6.3 ADDITIONAL RESULTS

6.3.1 METAWORLD

Figure 6: Performance profile of BC (red), CQL (green), CQL+UDS (orange) and CVL (blue)
generated by the rliable library (Agarwal et al., 2021b) for the offline MetaWorld experiments over
5 random seeds.

6.3.2 MOUNTAIN CAR

Figure 7: Evaluation returns on Mountain car during training on data from the SAC replay buffer.
The red dotted line indicates highest possible return.
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Task BC CQL CQL+UDS CVL (Tabula rasa) CVL (Pretrained)

basketball 3188 ± 348.9 646 ± 2.2 678 ± 112.6 4503 ± 113.8 4171 ± 285.9
bin-picking 13 ± 1.5 28 ± 0.7 21 ± 1.9 18 ± 1.8 860 ± 69.2
box-close 891 ± 164.4 311 ± 12.4 296 ± 19.8 1496 ± 131.2 4189 ± 352.4
button-press 2667 ± 85.3 3445 ± 60.2 3420 ± 273.4 3659 ± 51.9 1906 ± 360.2
button-press-topdown 3089 ± 256.7 3406 ± 525.7 3505 ± 990.9 3889 ± 36.2 548 ± 49.5
button-press-topdown-wall 1692 ± 47.0 2095 ± 28.4 2135 ± 66.4 2008 ± 21.7 546 ± 90.8
coffee-button 3490 ± 1435.5 3655 ± 740.6 3431 ± 689.8 4259 ± 169.9 149 ± 10.8
coffee-pull 647 ± 11.7 250 ± 10.3 330 ± 3.2 833 ± 27.2 167 ± 0.6
dial-turn 1331 ± 48.7 4257 ± 389.4 4449 ± 276.1 4526 ± 42.8 4611 ± 176.9
disassemble 215 ± 4.3 215 ± 9.6 217 ± 36.0 214 ± 18.6 926 ± 5.6
door-close 3634 ± 141.5 4555 ± 200.9 4547 ± 215.2 4544 ± 7.6 4313 ± 194.0
door-lock 3073 ± 303.7 3775 ± 59.1 3777 ± 144.2 3537 ± 271.1 557 ± 20.6
door-open 828 ± 24.7 4526 ± 71.7 4531 ± 179.0 3985 ± 279.6 613 ± 113.0
door-unlock 1322 ± 181.1 4122 ± 50.2 4002 ± 80.1 3139 ± 413.7 4618 ± 49.7
drawer-close 4619 ± 53.4 4855 ± 0.0 4857 ± 2.0 4853 ± 6.8 2933 ± 671.8
drawer-open 1727 ± 204.0 2768 ± 45.6 2776 ± 25.2 2512 ± 149.3 4664 ± 14.4
faucet-close 4160 ± 49.8 4752 ± 1585.0 4713 ± 1724.2 4683 ± 47.8 4739 ± 57.0
faucet-open 2052 ± 80.9 4731 ± 401.8 4729 ± 561.1 3660 ± 221.9 1637 ± 64.9
hammer 2158 ± 272.0 898 ± 70.3 1030 ± 126.6 4632 ± 73.6 4630 ± 86.5
hand-insert 44 ± 17.8 443 ± 2.0 428 ± 1.5 180 ± 5.3 4612 ± 539.8
handle-press 4734 ± 36.3 2816 ± 4.4 2755 ± 0.8 4861 ± 28.6 2417 ± 169.2
handle-press-side 3820 ± 1556.5 4783 ± 170.5 4786 ± 478.1 4816 ± 352.6 654 ± 27.7
handle-pull 3642 ± 968.8 2422 ± 524.1 2436 ± 1286.8 4594 ± 38.6 4636 ± 35.8
handle-pull-side 3418 ± 1002.2 1898 ± 582.6 1757 ± 343.2 4660 ± 41.0 2904 ± 92.4
lever-pull 3659 ± 180.8 2233 ± 399.5 2157 ± 258.0 4459 ± 107.8 4207 ± 98.9
peg-insert-side 11 ± 1.1 17 ± 4.1 19 ± 1.8 15 ± 0.4 12 ± 0.8
peg-unplug-side 56 ± 1.9 29 ± 2.6 29 ± 2.4 87 ± 1.6 4593 ± 24.6
pick-out-of-hole 10 ± 0.2 207 ± 0.4 191 ± 3.4 1245 ± 186.4 5 ± 0.9
pick-place 1771 ± 416.2 1263 ± 407.6 1306 ± 128.5 2942 ± 454.1 4403 ± 508.3
pick-place-wall 0 ± 0.0 1 ± 0.0 71 ± 0.0 19 ± 0.0 3522 ± 775.3
plate-slide 3979 ± 57.3 2697 ± 475.3 3508 ± 747.0 4649 ± 142.6 802 ± 12.4
plate-slide-back 2402 ± 333.9 3163 ± 1290.3 3014 ± 303.9 4718 ± 306.8 196 ± 5.0
plate-slide-back-side 4017 ± 874.6 4736 ± 1519.0 4732 ± 137.6 4752 ± 196.9 4669 ± 95.1
plate-slide-side 2241 ± 536.9 3104 ± 308.1 3015 ± 329.5 2695 ± 413.8 1939 ± 27.5
push 1834 ± 317.9 494 ± 5.0 463 ± 3.3 1997 ± 196.8 4386 ± 192.7
push-back 9 ± 0.2 71 ± 1.4 135 ± 0.8 109 ± 1.4 204 ± 20.9
push-wall 3327 ± 508.6 689 ± 5.6 628 ± 4.2 4502 ± 176.7 4601 ± 205.6
reach 3069 ± 359.2 3301 ± 920.3 3275 ± 677.8 4819 ± 182.9 4658 ± 204.8
reach-wall 4515 ± 93.9 4828 ± 26.5 4829 ± 49.1 4811 ± 27.0 4825 ± 21.2
stick-pull 595 ± 19.8 297 ± 2.0 441 ± 3.7 4488 ± 52.0 3434 ± 162.9
stick-push 263 ± 6.1 896 ± 3.9 897 ± 3.4 1155 ± 147.5 2804 ± 551.3
sweep 817 ± 124.3 3086 ± 645.7 3162 ± 1507.1 4127 ± 567.2 4461 ± 49.5
sweep-into 532 ± 151.3 1974 ± 34.0 1834 ± 870.1 2657 ± 364.3 506 ± 14.8
window-close 3739 ± 80.4 4478 ± 452.5 4442 ± 13.1 4534 ± 56.2 4519 ± 63.2
window-open 3743 ± 147.3 2773 ± 1433.5 2841 ± 1163.5 4534 ± 109.4 524 ± 320.0

Table 4: Evaluation returns on MetaWorld offline tasks. Average ± standard deviation are shown
for 5 random seeds.
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