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Real-Time Continuous Pose Recovery of Human Hands Using
Convolutional Networks
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We present a novel method for real-time continuous pose recovery of mark-
erless complex articulable objects from a single depth image. Our method
consists of the following stages: a randomized decision forest classifier for
image segmentation, a robust method for labeled dataset generation, a con-
volutional network for dense feature extraction, and finally an inverse kine-
matics stage for stable real-time pose recovery. As one possible application
of this pipeline, we show state-of-the-art results for real-time puppeteering
of a skinned hand-model.
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1. INTRODUCTION

Inferring the pose of articulable objects from depth video data is a
difficult problem in markerless motion capture. Requiring real-time
inference with low latency for real-time applications makes this
even harder. The difficulty arises because articulable objects typi-
cally have many degrees of freedom (DOF), constrained parameter
spaces, self-similar parts, and suffer self-occlusion. All these fac-
tors make fitting a model directly to the depth data hard, and even
undesirable in practice, unless the fitting process is able to account
for such missing data.

One common approach to “fill in” missing data is to combine
multiple simultaneous video streams, but this is a costly demand on
the end-user and may prohibit widespread use of otherwise good
solutions. A second common approach, called “supervised learning”
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in computer vision and machine learning, is to train a model on
ground-truth data that combines the full pose of the object in the
frame with the depth image. The trained model can then use a priori
information from known poses to make informed guesses about the
likely pose in the current frame.

Large ground-truth datasets have been constructed for impor-
tant articulable objects such as human bodies, and robust real-time
pose inference systems have been trained on them using super-
vised learning. Unfortunately, most articulable objects, even com-
mon ones such as human hands, do not have publicly available
datasets, or these datasets do not adequately cover the vast range
of possible poses. Perhaps more importantly, it may be desirable
to infer the real-time continuous pose of objects that do not yet
have such datasets. The vast majority of objects seen in the world
fall into this category. A general method for dataset acquisition of
articulable objects is an important contribution of this work.

The main difficulty with using supervised learning for training
models to perform real-time pose inference of a human hand is in
obtaining ground-truth data for the hand pose. Typical models of
the human hand have 25–50 degrees of freedom [Erol et al. 2007]
and exclude important information such as joint angle constraints.
Since real hands exhibit joint angle constraints that are pose depen-
dent, faithfully expressing such limits is still difficult in practice.
Unfortunately, without such constraints, most models are capable
of poses that are anatomically incorrect. This means that sampling
the space of possible parameters using a real hand is more desirable
than exploring it with a model. With the advent of commodity depth
sensors, it is possible to economically capture continuous traversals
of this constrained low-dimensional parameter space in video and
then to robustly fit hand models to the data to recover the pose
parameters [Oikonomidis et al. 2011].

In this work, we present a solution to the difficult problem of
inferring the continuous pose of a human hand by first constructing
an accurate database of labeled ground-truth data in an automatic
process and then training a system capable of real-time inference.
Since the human hand represents a particularly difficult kind of
articulable object to track, we believe our solution is applicable to
a wide range of articulable objects. Our method has a small latency
equal to one frame of video, is robust to self-occlusion, requires
no special markers, and can handle objects with self-similar parts
such as fingers. To allow a broad range of applications, our method
works when the hand is smaller than 2% of the 640×480 = 307kpx
image area.

Our method can be generalized to track any articulable object
that satisfies three requirements: (1) the object to be tracked can be
modeled as a 3D boned mesh, (2) a binary classifier can be made
to label those pixels in the image belonging to the object, and (3)
the projection from pose space (of the bones) to a projected 2D
image in depth is approximately one-to-one. The model is used to
automatically label depth video captured live from a user. This data
is used to train a Randomized Decision Forest (RDF) architecture for
image segmentation as well as a Convolutional Network (ConvNet)
to infer the position of key model features in real time. We also
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Fig. 1. Pose recovery pipeline overview.

suggest a simple and robust inverse kinematics (IK) algorithm for
real-time, high-degree-of-freedom pose inference from the ConvNet
output. The system can accommodate multiple commodity depth
cameras for generating training data, but requires only a single
depth camera for real-time tracking. We believe the key technical
contribution of this work is the creation of a novel pipeline for fast
pose inference applicable to a wide variety of articulable objects.
An overview of this pipeline is shown in Figure 1.

As a single example, training our system on an open-source
linear-blend skinning model of a hand with 42 degrees of freedom
takes less than 10 minutes of human effort (18,000 frames at 30fps),
followed by two days of autonomous computation time. Tracking
and pose inference for a person’s hand can then be performed in
real time using a single depth camera. Throughout our experiments,
the camera is situated in front of the user at approximately eye-level
height. The trained system can be readily used to puppeteer related
objects such as alien hands, or real robot linkages, and as an input
to 3D user interfaces [Stein et al. 2012].

2. RELATED WORK

A large body of literature is devoted to real-time recovery of pose
for markerless articulable objects, such as human bodies, clothes,
and man-made objects. As the primary contribution of our work is
a fast pipeline for recovery of the pose of human hands in 3D, we
will limit our discussion to the most relevant prior work.

Many groups have created their own dataset of ground-truth labels
and images to enable real-time pose recovery of the human body.
For example, Wang et al. [2011] use the CyberGlove II Motion
Capture system to construct a dataset of labeled hand poses from
users that are rerendered as a colored glove with known texture. A
similar colored glove is worn by the user at runtime, while the pose
is inferred in real time by matching the imaged glove in RGB to their
database of templates [Wang and Popović 2009]. In later work, the
CyberGlove data was repurposed for pose inference using template
matching on depth images, without a colored glove. Wang et al.
have recently commercialized their hand-tracking system (which
is now proprietary and managed by 3Gear Systems [3Gear 2014])
that now uses a PrimeSenseTMdepth camera oriented above the
table to recognize a large range of possible poses. This work differs
from 3Gear’s in a number of ways: (1) we attempt to perform
continuous pose estimation rather than recognition by matching into
a static and discrete database and (2) we orient the camera facing
the user and so our system is optimized for a different set of hand
gestures.

Also relevant to our work is that of Shotton et al. [2011], who used
randomized decision forests to recover the pose of multiple bodies
from a single frame by learning a per-pixel classification of the
depth image into 38 different body parts. Their training examples
were synthesized from combinations of known poses and body
shapes. In similar work, Keskin et al. [2011] created a randomized
decision forest classifier specialized for human hands. Lacking a
dataset based on human motion capture, they synthesized a dataset
from known poses in American Sign Language and expanded the

dataset by interpolating between poses. Owing to their prescribed
goal of recognizing sign-language signs themselves, this approach
proved useful, but would not be feasible in our case as we require
unrestricted hand poses to be recovered. In a follow-up work Keskin
et al. [2012], those authors presented a novel shape classification
forest architecture to perform per-pixel part classification.

Several other groups have used domain knowledge and temporal
coherence to construct methods that do not require any dataset for
tracking the pose of complicated objects. For example, Weise et al.
[2009] devise a real-time facial animation system for range sensors
using salient points to deduce transformations on an underlying
face model by framing it as energy minimization. In related work,
Li et al. [2013] showed how to extend this technique to enable
adaptation to the user’s own facial expressions in an online fashion.
Melax et al. [2013] demonstrate a real-time system for tracking the
full pose of a human hand by fitting convex polyhedra directly to
range data using an approach inspired by constraint-based physics
systems. Ballan et al. [2012] show how to fit high-polygon hand
models to multiple camera views of a pair of hands interacting
with a small sphere, using a combination of feature-based tracking
and energy minimization. In contrast to our method, their approach
relies upon inter-frame correspondences to provide optical flow and
good starting poses for energy minimization.

Early work by Rehg and Kanade [1994] demonstrated a model-
based tracking system that fits a high-degree-of-freedom articulated
hand model to greyscale image data using hand-designed 2D fea-
tures. Zhao et al. [2012] use a combination of IR markers and
RGBD capture to infer offline (at one frame per second) the pose
of an articulated hand model. Similar to this work, Oikonomidis
et al. [2011] demonstrate the utility of Particle Swarm Optimization
(PSO) for tracking single and interacting hands by searching for
parameters of an explicit 3D model that reduce the reconstruction
error of a z-buffer rendered model compared to an incoming depth
image. Their work relies heavily on temporal coherence assump-
tions for efficient inference of the PSO optimizer, since the radius
of convergence of their optimizer is finite. Unfortunately, temporal
coherence cannot be relied on for robust real-time tracking since
dropped frames and fast-moving objects typically break this tempo-
ral coherency assumption. In contrast to their work that used PSO
directly for interactive tracking on the GPU at 4–15fps, our work
shows that, with relaxed temporal coherence assumptions in an of-
fline setting, PSO is an invaluable offline tool for generating labeled
data.

To our knowledge, there is no published prior work on using
ConvNets to recover continuous 3D pose of human hands from
depth data. However, several groups have shown ConvNets can re-
cover the pose of rigid and nonrigid 3D objects such as plastic toys,
faces, and even human bodies. For example, LeCun et al. [2004]
used ConvNets to deduce the 6DOF pose of 3D plastic toys by
finding a low-dimensional embedding that maps RGB images to a
six-dimensional space. Osadchy et al. [2005] use a similar formula-
tion to perform pose detection of faces via a nonlinear mapping to a
low-dimensional manifold. Taylor et al. [2011] use crowd-sourcing
to build a database of similar human poses from different sub-
jects and then use ConvNets to perform dimensionality reduction
on a low-dimensional manifold, where similarity between training
examples is preserved. Lastly, Jiu et al. [2013] use ConvNets to
perform per-pixel classifications of depth images (whose output is
similar to Shotton et al. [2011]) in order to infer human body pose,
but they do not evaluate the performance of their approach on hand
pose recognition.

Couprie et al. [2013] use ConvNets to perform image segmenta-
tion of indoor scenes using RGB-D data. The significance of their
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Fig. 2. Decision forest data: learned labels closely match target.

work is that it shows that ConvNets can perform high-level reason-
ing from depth image features.

3. BINARY CLASSIFICATION

For the task of hand-background depth image segmentation we
trained an RDF classifier to perform per-pixel binary segmentation
on a single image. The output of this stage is shown in Figure 2.
Decision forests are well suited for discrete classification of body
parts [Shotton et al. 2011]. Furthermore, since decision forest clas-
sification is trivially parallelizable, it is well suited to real-time
processing in multicore environments.

After Shotton et al., our RDF is designed to classify each pixel
in a depth image as belonging to a hand or background. Each tree
in the RDF consists of a set of sequential deterministic decisions,
called weak learners (or nodes), that compare the relative depth of
the current pixel to a nearby pixel located at a learned offset. The
particular sequence of decisions a pixel satisfies induces a tentative
classification into hand or background. Averaging the classification
from all trees in the forest induces a final probability distribution for
each pixel. As our implementation differs only slightly from that
of Shotton et al., we refer interested readers to their past work and
focus on the innovations particular to our implementation.

While full-body motion capture datasets are readily avail-
able [Allen et al. 2003], these datasets either lack articulation data
for hands or else do not adequately cover the wide variety of poses
that were planned for this system. Therefore, it was necessary to
create a custom database of full-body depth images with binary
hand labeling for RDF training (Figure 2). We had one user paint
his hands bright red with body paint and used a simple HSV-based
distance metric to estimate a coarse hand labeling on the RGB im-
age. The coarse labeling was then filtered using a median filter to
remove outliers. Since commodity RGB+Depth (RGBD) cameras
typically exhibit imperfect alignment between depth and RGB, we
used a combination of graph cut and depth-sensitive flood fill to
further clean up the depth image labeling [Boykov et al. 2001].

In order to train the RDF we randomly sample weak learners
from a family of functions, similar to Shotton et al. [2011]. At a
given pixel (u, v) on the depth image I , each node in the decision
tree evaluates,

I

(
u + �u

I (u, v)
, v + �v

I (u, v)

)
− I (u, v) ≥ dt , (1)

where I (u, v) is the depth pixel value in image I , �u and �v are
learned pixel offsets, and dt is a learned depth threshold. Experi-
mentally, we found that (1) requires a large dynamic range of pixel
offsets during training to achieve good classification performance.

Fig. 3. Linear-blend-skinning (LBS) model [Šarić 2011] with 42DOF.

We suspect that this is because a given decision path needs to use
both global and local geometry information to perform efficient
hand-background segmentation. Since training time is limited, we
define a discrete set of weak learners that use offset and threshold
values that are linear in log space and then we randomly sample
weak learners from this space during training.

4. DATASET CREATION

The goal of this stage is to create a database of RGBD sensor images
representing a broad range of hand gestures with accurate ground-
truth estimates (i.e., labels) of joint parameters in each image that
may be used to train a ConvNet. The desired ground-truth label
consists of a 42-dimensional vector describing the full degree-of-
freedom pose for the hand in that frame. The DOF of each hand
joint is shown in Figure 3. After the hand has been segmented
from the background using the RDF-based binary classification
just described, we use a direct search method to deduce the pose
parameters based on the approach of Oikonomidis et al. [2011].
An important insight of our work is that we can capture the power
of their direct search method in an offline fashion and then use it
to train ConvNets (or similar algorithms that are better suited to
fast computation). One advantage of this decoupling is that, during
offline training, we are not penalized for using more complicated
models that are more expensive to render yet better explain the
incoming range data. A second advantage is that we can utilize
multiple sensors for training, thereby mitigating problems of self-
occlusion during real-time interaction with a single sensor.

The algorithm proposed by Oikonomidis et al. [2011] and adopted
with modifications for this work is as follows: starting with an
approximate hand pose, a synthetic depth image is rendered and
compared to the depth image using a scalar objective function. This
depth image is rendered in an OpenGL-based framework, where
the only render output is the distance from the camera origin and
we use a camera with the same properties (e.g., focal length) as
the PrimeSenseTMIR sensor. In practice the hand pose is estimated
using the previous frame’s pose when fitting a sequence of recorded
frames. The pose is manually estimated using a simple UI for the first
frame in a sequence. This results in a single scalar value representing
the quality of the fit given the estimated pose coefficients. The
particle swarm optimization with partial randomization (PrPSO)
direct search method [Yasuda et al. 2010] is used to adjust the
pose coefficient values to find the best-fit pose that minimizes this
objective function value. An overview of this algorithm is shown in
Figure 4.

Since PSO convergence is slow once the swarm positions are
close to the final solution (which is exacerbated when partial
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Fig. 4. Algorithm pipeline for dataset creation.

randomization is used to prevent premature swarm collapse on
early local minima), we then use a robust variant of the Nelder-
Mead optimization algorithm [Tseng 1995] after PSO has com-
pleted. The Nelder-Mead optimization algorithm is a simplex-based
direct-search optimization algorithm for nonlinear functions. We
have found that, for our optimization problem, it provides fast con-
vergence when sufficiently close to local optima.

Since this dataset creation stage is performed offline, we do not
require it to be fast enough for interactive frame rates. Therefore
we used a high-quality, linear-blend-skinning (LBS) model [Šarić
2011] (shown in Figure 3) as an alternative to the simple ball-
and-cylinder model of Oikonomidis et al. After reducing the LBS
model’s face count to increase render throughput, the model con-
tains 1,722 vertices and 3,381 triangle faces, whereas the high-
density source model contained 67,606 faces. While LBS fails to
accurately model effects such as muscle deformation and skin fold-
ing, it represents many geometric details that ball-and-stick models
cannot.

To mitigate the effects of self-occlusion, we used three sensors
(at viewpoints separated by approximately 45◦ surrounding the user
from the front) with attached vibration motors to reduce IR-pattern
interference [Butler et al. 2012] and whose relative positions and
orientations were calibrated using a variant of the Iterative Closest
Point (ICP) algorithm [Horn 1987]. While we use all three camera
views to fit the LBS model using the algorithm described earlier,
we only use depth images taken from the center camera to train the
ConvNet. The contributions from each camera were accumulated
into an overall fitness function F (C) that includes two a priori
terms (� (C) and P (C)) to maintain anatomically correct joint
angles as well as a data-dependant term �(Is , C) from each camera’s
contribution. The fitness function is

F (C) =
3∑

s=1

(�(Is, C)) + � (C) + P (C) , (2)

where Is is the s sensor’s depth image and C is a 42-dimensional
coefficient vector that represents the 6DOF position and orientation
of the hand as well as 36 internal joint angles (shown in Figure 3).
P (C) is an interpenetration term (for a given pose) used to invalidate
anatomically incorrect hand poses and is calculated by accumulat-
ing the interpenetration distances of a series of bounding spheres
attached to the bones of the 3D model. We define interpenetration

distance as simply the sum of overlap between all pairs of inter-
penetrating bounding spheres. � (C) enforces a soft constraint that
coefficient values stay within a predetermined range (Cmin and Cmax)

� (C) =
n∑

k=1

wk [max (Ck − Ckmax, 0) + max (Ckmin − Ck, 0)] ,

where wk is a per-coefficient weighting term to normalize penalty
contributions across different units (since we are including error
terms for angle and distance in the same objective function). Cmin

and Cmax were determined experimentally by fitting an uncon-
strained model to a discrete set of poses that represent the full
range of motion for each joint. Lastly �(Is, C) of Eq. (2) measures
the similarity between the depth image Is and the synthetic pose
rendered from the same viewpoint.

� (Is, C) =
∑
u,v

min (|Is(u, v) − Rs(C, u, v)| , dmax)

Here, Is(u, v) is the depth at pixel (u, v) of sensor s, Rs(C, u, v)
is the synthetic depth given the pose coefficient C, and dmax is a
maximum depth constant. The result of this function is a clamped
L1-norm pixelwise comparison. It should be noted that we do not
include energy terms that measure the silhouette similarity, as pro-
posed by Oikonomidis et al., since we found that when multiple
range sensors are used these terms are not necessary.

5. FEATURE DETECTION

While neural networks have been used for pose detection of a lim-
ited set of discrete hand gestures (for instance, in discriminating
between a closed fist and an open palm) [Nagi et al. 2011; Nowlan
and Platt 1995], to our knowledge this is the first work that has
attempted to use such networks to perform dense feature extraction
of human hands in order to infer continuous pose. To do this we
employ a multiresolution, deep ConvNet architecture inspired by
the work of Farabet et al. [2013] in order to perform feature ex-
traction of 14 salient hand points from a segmented hand image.
ConvNets are biologically inspired variants of multilayered percep-
trons, which exploit spatial correlation in natural images by extract-
ing features generated by localized convolution kernels. Since depth
images of hands tend to have many repeated local image features
(for instance, fingertips), ConvNets are well suited to perform fea-
ture extraction since multilayered feature banks can share common
features, thereby reducing the number of required free parameters.

We recast the full hand pose recognition problem as an interme-
diate collection of easier individual hand-feature recognition prob-
lems that can be more easily learned by ConvNets. In early experi-
ments we found inferring mappings between depth image space and
pose space directly (for instance, measuring depth image geometry
to extract a joint angle) yielded inferior results to learning with in-
termediate features. We hypothesize that one reason for this could
be that learning intermediate features allows ConvNets to concen-
trate the capacity of the network on learning local features and on
differentiating between them. Using this framework the ConvNet is
also better able to implicitly handle occlusions; by learning com-
pound, high-level image features, the ConvNet is able to infer the
approximate position of an occluded and otherwise unseen feature
(for instance, when making a fist, hidden fingertip locations can be
inferred by the knuckle locations).

We trained the ConvNet architecture to generate an output set of
heat-map feature images (Figure 5). Each feature heat map can be
viewed as a 2D Gaussian (truncated to have finite support), where
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Fig. 5. Depth image overlaid with 14 feature locations and the heat map
for one fingertip feature.

Fig. 6. Convolutional network architecture.

the pixel intensity represents the probability of that feature occur-
ring in that spatial location. The Gaussian UV mean is centered at
one of 14 feature points of the user’s hand. These features repre-
sent key joint locations in the 3D model (e.g., knuckles) and were
chosen such that the inverse kinematics (IK) algorithm described in
Section 6 can recover a full 3D pose.

We found that the intermediate heat-map representation not only
reduces required learning capacity, but also improves generaliza-
tion performance since failure modes are often recoverable. Cases
contributing to high test-set error (where the input pose is vastly dif-
ferent from anything in the training set) are usually heat maps that
contain multiple hotspots. For instance, the heat map for a finger-
tip feature might incorrectly contain multiple lobes corresponding
to the other finger locations as the network failed to discriminate
among fingers. When this situation occurs, it is possible to recover
a reasonable feature location by simple heuristics to decide which
of these lobes corresponds to the desired feature (for instance, if
another heat map shows higher probability in those same lobe re-
gions then we can eliminate these as spurious outliers). Similarly,
the intensity of the heat-map lobe gives a direct indication of the
system’s confidence for that feature. This is an extremely useful
measure for practical applications.

Our multiresolution ConvNet architecture is shown in Figure 6.
The segmented depth image is initially preprocessed, whereby the
image is cropped and scaled by a factor proportional to the mean
depth value of the hand pixels, so that the hand is in the center and
has size that is depth invariant. The depth values of each pixel are
then normalized between 0 and 1 (with background pixels set to 1).
The cropped and normalized image is shown in Figure 5.

The preprocessed image is then filtered using local contrast nor-
malization [Jarrett et al. 2009], which acts as a high-pass filter
to emphasize geometric discontinuities. The image is then down-
sampled twice (each time by a factor of 2) and the same filter is
applied to each image. This produces a multiresolution band-pass

Fig. 7. Neural network input: multiresolution image pyramid.

Fig. 8. High-resolution bank feature detector; each stage:
(Nfeatures × height × width).

image pyramid with three banks (shown in Figure 7), whose to-
tal spectral density approximates the spectral density of the input
depth image. Since experimentally we have found that hand pose
extraction requires knowledge of both local and global features, a
single-resolution ConvNet would need to examine a large image
window and thus would require a large learning capacity; as such,
a multiresolution architecture is very useful for this application.

The pyramid images are propagated through a two-stage Con-
vNet architecture. The highest-resolution feature bank is shown in
Figure 8. Each bank is comprised of two convolution modules, two
piecewise nonlinearity modules, and two max-pooling modules.
Each convolution module uses a stack of learned convolution ker-
nels with an additional learned output bias to create a set of output
feature maps (please refer to LeCun et al. [1998] for an in-depth
discussion). The convolution window sizes range from 4×4 to 6×6
pixels. Each max-pooling [Nagi et al. 2011] module subsamples its
input image by taking the maximum in a set of nonoverlapping rect-
angular windows. We use max pooling since it effectively reduces
computational complexity at the cost of spatial precision. The max-
pooling windows range from 2 × 2 to 4 × 4 pixels. The nonlinearity
is a Rectify Linear Unit (ReLU), that has been shown to improve
training speed and discrimination performance in comparison to the
standard sigmoid units [Krizhevsky et al. 2012]. Each ReLU activa-
tion module computes the following per-pixel nonlinear function.

f (x) = max (0, x)

Lastly, the output of the ConvNet banks are fed into a two-stage
neural network shown in Figure 9. This network uses the high-level
convolution features to create the final 14 heat-map images; it does
so by learning a mapping from localized convolution feature activa-
tions to probability maps for each of the bone features. In practice,
these two large and fully connected linear networks account for
more than 80% of the total computational cost of the ConvNet.
However, reducing the size of the network has a very strong impact
on runtime performance. For this reason, it is important to find a
good trade-off between quality and speed. Another drawback of this
method is that the neural network must implicitly learn a likelihood
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Fig. 9. Two-stage neural network to create the 14 heat maps (with sizing
of each stage shown).

model for joint positions in order to infer anatomically correct out-
put joints. Since we do not explicitly model joint connectivity in the
network structure, the network requires a large amount of training
data to correctly perform this inference.

ConvNet training was performed using the open-source machine
learning package Torch7 [Collobert et al. 2011] that provides ac-
cess to an efficient GPU implementation of the back-propagation
algorithm for training neural networks. During supervised training
we use stochastic gradient descent with a standard L2-norm error
function, batch size of 64, and the following learnable parameter
update rule

�wi = γ�wi−1 − λ

(
ηwi − ∂L

∂wi

)
wi+1 = wi + �wi, (3)

where wi is a bias or weight parameter for each of the network
modules for epoch i (with each epoch representing one pass over
the entire training set) and ∂L

∂wi
is the partial derivative of the error

function L with respect to the learnable parameter wi averaged
over the current batch. We use a constant learning rate of λ = 0.2
and a momentum term γ = 0.9 to improve the learning rate when
close to the local minimum. Lastly, an L2-regularization factor of
η = 0.0005 is used to help improve generalization.

During ConvNet training, the preprocessed database images were
randomly rotated, scaled, and translated to improve generalization
performance [Farabet et al. 2013]. Not only does this technique
effectively increase the size of the training set (which improves
test/validation-set error), it also helps improve performance for
other users whose hand size is not well represented in the origi-
nal training set. We perform this image manipulation in a back-
ground thread during batch training so the impact on training time
is minimal.

6. POSE RECOVERY

We formulate the problem of pose estimation from the heat-map
output as an optimization problem, similar to inverse kinematics
(IK). We extract 2D and 3D feature positions from the 14 heatmaps
and then minimize an appropriate objective function to align 3D
model features to each heat-map position.

To infer the 3D position corresponding to a heat-map image, we
need to determine the most likely UV position of the feature in the
heat-map. Although the ConvNet architecture is trained to output
heat-map images of 2D Gaussians with low variance, in general,

they output multimodal gray-scale heat maps that usually do not
sum to 1. In practice, it is easy to deduce a correct UV position
by finding the maximal peak in the heat map (corresponding to the
location of greatest confidence). Rather than using the most likely
heat-map location as the final location, we fit a Gaussian model to
the maximal lobe to obtain subpixel accuracy.

First we clamp heat-map pixels below a fixed threshold to get
rid of spurious outliers. We then normalize the resulting image so it
sums to 1, then fit the best 2D Gaussian using Levenberg-Marquardt,
and use the mean of the resulting Gaussian as the UV position. Once
the UV position is found for each of the 14 heat maps, we perform a
lookup into the captured depth frame to obtain the depth component
at the UV location. In case this UV location lies on a depth shadow
where no depth is given in the original image, we store the computed
2D image for this point in the original image space. Otherwise, we
store its 3D point.

We then perform unconstrained nonlinear optimization on the
following objective function

f (m) =
n∑

i=1

[�i (m)] + � (C) , (4)

�i (m) =
{ ∥∥ (u, v, d)ti − (u, v, d)mi

∥∥
2

if dt
i �= 0∥∥ (u, v)ti − (u, v)mi

∥∥
2

otherwise,

where (u, v, d)ti is the target 3D heat-map position of feature i and
(u, v, d)mi is the model feature position for the current pose estimate.
Eq. (4) is an L2-error norm in 3D or 2D, depending on whether or
not the given feature has a valid depth component associated with it.
We then use a simple linear accumulation of these featurewise error
terms, as well as the same linear penalty constraint (� (C)) used
in Section 4. We use PrPSO to minimize Eq. (4). Since function
evaluations for each swarm particle can be parallelized, PrPSO is
able to run in real time at interactive frame rates for this stage.
Furthermore, since a number of the 42 coefficients from Section 4
contribute only subtle behavior to the deformation of the LBS model
at real time, we found that removing coefficients describing finger
twist and coupling the last two knuckles of each finger into a single
angle coefficient significantly reduces the function evaluation time
of (4) without noticeable loss in pose accuracy. Therefore, we reduce
the complexity of the model to 23DOF during this final stage. Fewer
than 50 PrPSO iterations are required for adequate convergence.

This IK approach has one important limitation: the UVD target
position may not be a good representation of the true feature posi-
tion. For instance, when a feature is directly occluded by another
feature, the two features will incorrectly share the same depth value
(even though one is in front of the other). However, we found that
for a broad range of gestures this limitation was not noticeable. In
future work we hope to augment the ConvNet output with a learned
depth offset to overcome this limitation.

7. RESULTS

For the results to follow, we test our system using the same experi-
mental setup that was used to capture the training data; the camera
is in front of the user (facing the user) and is at approximately eye-
level height. We have not extensively evaluated the performance of
our algorithm in other camera setups.

The RDF classifier described in Section 4 was trained using
6,500 images (with an additional 1,000 validation images held
aside for tuning of the RDF meta-parameters) of a user performing
typical one- and two-handed gestures (pinching, drawing, clapping,
grasping, etc.). Training was performed on a 24-core machine for
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Fig. 10. RDF Error.

Fig. 11. Dataset creation: objective function data (with Libhand
model [Šarić 2011]).

approximately 12 hours. For each node in the tree, 10,000 weak
learners were sampled. The error ratio of the number of incorrect
pixel labels to total number of hand pixels in the dataset for varying
tree counts and tree heights is shown in Figure 10.

We found that four trees with a height of 25 was a good trade-off
of classification accuracy versus speed. The validation-set classifi-
cation error for four trees of depth 25 was 4.1%. Of the classification
errors, 76.3% were false positives and 23.7% were false negatives.
We found that, in practice, small clusters of false positive pixel
labels can be easily removed using median filtering and blob detec-
tion. The common classification failure cases occur when the hand
is occluded by another body part (causing false positives), or when
the elbow is much closer to the camera than the hand (causing false
positives on the elbow). We believe this inaccuracy results from the
training set not containing any frames with these poses. A more
comprehensive dataset containing examples of these poses should
improve performance in the future.

Since we do not have a ground-truth measure for the 42DOF
hand model fitting, quantitative evaluation of this stage is difficult.
Qualitatively, the fitting accuracy was visually consistent with the
underlying point cloud. An example of a fitted frame is shown in
Figure 11. Only a very small number of poses failed to fit correctly;
for these difficult poses, manual intervention was required.

One limitation of this system was that the frame rate of the
PrimeSenseTMcamera (30fps) was not sufficient to ensure enough
temporal coherence for correct convergence of the PSO optimizer.
To overcome this, we had each user move her hands slowly during

Fig. 12. Sample ConvNet test-set images.

Fig. 13. ConvNet Learning Curve.

training data capture. Using a workstation with an Nvidia GTX
580 GPU and 4-core Intel processor, fitting each frame required 3
to 6 seconds. The final database consisted of 76,712, training-set
images, 2,421 validation-set images, and 2,000 test-set images with
their corresponding heat-maps, collected from multiple participants.
A small sample of the test-set images is shown in Figure 12.

The ConvNet training took approximately 24 hours where
early stopping is performed after 350 epochs to prevent overfit-
ting. ConvNet hyperparameters, such as learning rate, momentum,
L2-regularization, and architectural parameters (e.g., max-pooling
window size or number of stages) were chosen by coarse meta-
optimization to minimize a validation-set error. Two stages of con-
volution (at each resolution level) and two fully connected neural
network stages were chosen as a trade-off between numerous perfor-
mance characteristics: generalization performance, evaluation time,
and model complexity (or ability to infer complex poses). Figure 13
shows the Mean Squared Error (MSE) after each epoch. The MSE
was calculated by taking the mean of sum-of-squared differences
between the calculated 14 feature maps and the corresponding target
feature maps.

The mean UV error of the ConvNet heat-map output on the test-
set data was 0.41px (with standard deviation of 0.35px) on the
18 × 18-resolution heat-map image1. After each heat-map feature
was translated to the 640 × 480-depth image, the mean UV error
was 5.8px (with standard deviation of 4.9px). Since the heat-map
downsampling ratio is depth dependent, the UV error improves as
the hand approaches the sensor. For applications that require greater

1To calculate this error we used the technique described in Section 6 to
calculate the heat-map UV feature location and then calculated the error
distance between the target and ConvNet output locations.
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Table I. Heat-Map UV Error by Feature Type

Feature Type Mean (px) STD (px)

Palm 0.33 0.30

Thumb Base & Knuckle 0.33 0.43

Thumb Tip 0.39 0.55

Finger Knuckle 0.38 0.27

Finger Tip 0.54 0.33

Fig. 14. Real-time tracking results, (a) typical hardware setup, (b) depth
with heat-map features, (c) ConvNet input and pose output.

accuracy, the heat-map resolution can be increased for better spatial
accuracy at the cost of increased latency and reduced throughput.

Table I shows the UV accuracy for each feature type. Unsurpris-
ingly, we found that the ConvNet architecture had the most difficulty
learning fingertip positions, where the mean error is 61% higher than
the accuracy of the palm features. The likely cause for this inaccu-
racy is twofold. First, the fingertip positions undergo a large range
of motion between various hand poses and therefore the ConvNet
must learn a more difficult mapping between local features and
fingertip positions. Second, the PrimeSenseTMCarmine 1.09 depth
camera cannot always recover the depth of small surfaces such as
fingertips. The ConvNet is able to learn this noise behavior and is
actually able to approximate fingertip location in the presence of
missing data. However, the accuracy for these poses is low.

The computation time of the entire pipeline is 24.9ms, which is
within our 30fps performance target. Within this period: decision
forest evaluation takes 3.4ms, depth image preprocessing takes
4.7ms, ConvNet evaluation takes 5.6ms, and pose estimation takes
11.2ms. The entire pipeline introduces approximately one frame
of latency. For an example of the entire pipeline running in real
time as well as puppeteering of the LBS hand model, please refer
to the supplementary video (screenshots from this video are shown
in Figure 14).

Figure 15 shows three typical fail cases of our system. In
Figure 15(a) finite spatial precision of the ConvNet heat map results
in finger tip positions that are not quite touching. In Figure 15(b) no
similar pose exists in the database used to train the ConvNet, and
for this example the network generalization performance was poor.
In Figure 15(c) the PrimeSenseTMdepth camera fails to detect the
ring finger (the surface area of the fingertip presented to the camera
is too small and the angle of incidence in the camera plane is too
shallow), thus the ConvNet has difficulty inferring the fingertip po-
sition without adequate support in the depth image, resulting in an
incorrect inferred position.

Figure 16 shows that the ConvNet output is tolerant for hand
shapes and sizes that are not well represented in the ConvNet train-
ing set. The ConvNet and RDF training sets did not include any
images for user (b) and user (c) (only user (a)). We have only
evaluated the system’s performance on adult subjects. We found

Fig. 15. Fail cases: RGB ground truth (top row) inferred model [Šarić
2011] pose (bottom row).

Fig. 16. Hand shape/size tolerance: RGB ground truth (top row); depth
with annotated ConvNet output positions (bottom row).

that adding a single per-user scale parameter to approximately ad-
just the size of the LBS model to a user’s hand helped the real-time
IK stage to better fit the ConvNet output.

Comparison of the relative real-time performance of this work
with relevant prior art, such as that of 3Gear [2014] and Melax
et al. [2013], is difficult for a number of reasons. First, Melax et al.
[2013] use a different capture device that prevents fair comparison,
as it is impossible (without degrading sensor performance by using
mirrors) for multiple devices to simultaneously see the hand from
the same viewpoint. Second, no third-party ground-truth database
of poses with depth frames exists for human hands, so comparing
the quantitative accuracy of numerous methods against a known
baseline is not possible. More importantly, however, is that the
technique utilized by 3Gear [2014] is optimized for an entirely
different use case and so fair comparison with their work is very
difficult. 3Gear [2014] utilizes a vertically mounted camera, can
track multiple hands simultaneously, and is computationally less
expensive than the method presented in our work.

Figure 17 examines the performance of this work with the pro-
prietary system of 3Gear [2014] (using the fixed database version of
the library) for four poses chosen to highlight the relative difference
between the two techniques (images used with permission from
3Gear). We captured this data by streaming the output of both sys-
tems simultaneously (using the same RGBD camera). We mounted
the camera vertically as this is required for 3Gear [2014], however,
our training set did not include any poses from this orientation.
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Fig. 17. Comparison with state-of-the-art commercial system: RGB
ground truth (top row); this work inferred model [Šarić 2011] pose (middle
row); 3Gear [2014] inferred model pose (bottom row) (images used with
permission from 3Gear).

Therefore, we expect our system to perform suboptimally for this
very different use case.

8. FUTURE WORK

As indicated in Figure 16, qualitatively we have found that the
ConvNet generalization performance to varying hand shapes is ac-
ceptable but could be improved. We are confident we can make
improvements by adding more training data from users with differ-
ent hand sizes to the training set.

For this work, only the ConvNet forward-propagation stage was
implemented on the GPU. We are currently working on imple-
menting the entire pipeline on the GPU, which should significantly
improve the performance of the other pipeline stages. For example,
the GPU ConvNet implementation requires 5.6ms, while the same
network executed on the CPU (using optimized multithreaded C++
code) requires 139ms.

The current implementation of our system can track two hands
only if they are not interacting. While we have determined that
the dataset generation system can fit multiple strongly interacting
hand poses with sufficient accuracy, it is future work to evaluate the
neural network recognition performance on these poses. Likewise,
we hope to evaluate the recognition performance on hand poses
involving interactions with non-hand objects (such as pens and
other man-made devices).

While the pose recovery implementation presented in this work
is fast, we hope to augment this stage by including a model-based
fitting step that trades convergence radius for fit quality. Specifically,
we suspect that replacing our final IK stage with an energy-based
local optimization method, inspired by the work of Li et al. [2008],
could allow our method to recover second-order surface effects
such as skin folding and skin-muscle coupling from very limited
data and still maintain low latency. In addition to inference, such a
localized energy-minimizing stage would enable improvements to
the underlying model itself. Since these localized methods typically
require good registration, our method, which gives correspondence

from a single image, could advance the state-of-the-art in nonrigid
model capture.

Finally, we hope to augment our final IK stage with some form of
temporal pose prior to reduce jitter, for instance, using an extended
Kalman filter as a postprocessing step to clean up the ConvNet
feature output.

9. CONCLUSION

We have presented a novel pipeline for tracking the instantaneous
pose of articulable objects from a single depth image. As an applica-
tion of this pipeline, we showed state-of-the-art results for tracking
human hands in real time using commodity hardware. This pipeline
leverages the accuracy of offline model-based dataset generation
routines in support of a robust real-time convolutional network ar-
chitecture for feature extraction. We showed that it is possible to
use intermediate heat-map features to extract accurate and reli-
able 3D pose information at interactive frame rates using inverse
kinematics.
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